MATH 351: CLASS DISCUSSION, 17 SEPTEMBER

LIMIT THEOREMS; SUBSEQUENCES

One of the many "find N given ε " demons

- 1. Using the error-form principle, prove that if $a_n \to L$, then $|a_n| \to |L|$. Is the converse true? Proof or counterexample.
- 2. If $a_n = \frac{25n^3 + n^2 n + 2018}{5n^3 13n^2 + 1789} = 5$ find an M such that $|e_n| < 0.02$ for all n > M.
- 3. Using the limit theorems prove that

$$\lim_{n \to \infty} \frac{25n^3 + n^2 - n + 2018}{5n^3 - 13n^2 + 1789} = 5$$

- 4. *Review:* Let |a| < 1. For $n \ge 1$, let $S_n = 1 + a + a^2 + \dots + a^n$. Using the error-form principle, prove that $\lim_{n \to \infty} S_n = \frac{1}{1-a}$. *Hint:* Show that $e_n = -\frac{a^{n+1}}{1-a}$.
- 5. State the three main limit theorems for sequences and prove each using the error-form principle.
- 6. (*Review of calculus*) Derive a recursive form of Newton's method for finding roots of a differentiable function y = f(x).
- 7. Applying Newton's method to the polynomial $p(x) = x^2 2$, find a recursive sequence that converges to $\sqrt{2}$. Use the error-form principle to prove the result.
- 8. Prove the Squeeze theorem, *viz*:

Given three sequences, $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ satisfying $a_n \le b_n \le c_n$ for $n \gg 1$. Suppose that $a_n \to L$ and $c_n \to L$. Then $b_n \to L$.

- 9. Example: Let α be given. Then $\sqrt[n]{2 + \cos n\alpha} \rightarrow 1$.
 - *Hint:* Use the result of exercise 3.4/5, *viz*.

If c > 0 then $\sqrt[n]{c} \rightarrow 1$.

10. *Example:* Prove that $\lim_{n \to \infty} \frac{\ln(n!)}{n \ln n} = 1$.

Hint: $\ln(n!) = \ln 1 + \ln 2 + \ln 3 + \dots + \ln n$

11. Find $\lim n(a + \cos n \pi)$ for different values of a.

- 12. Prove the Sequence location theorem, viz:
 - If $\{a_n\}$ converges and $\lim a_n < M$, then $a_n < M$ for n >> 1.
- 13. State the corresponding version of the Sequence location theorem for a convergent sequence bounded below.
- 14. Prove the Limit location theorem, viz:

If $\{a_n\}$ converges and $\exists M$ such that $a_n \leq M$ for $n \gg 1$, then $\lim_{n \to \infty} a_n \leq M$.

- 15. State the corresponding version of the Limit location theorem for a convergent sequence bounded below.
- 16. Prove the following useful Corollary to the LLT, viz.

Let $\{a_n\}$ and $\{b_n\}$ be convergent sequences and assume that $a_n \le b_n$ for n >> 1. Then $\lim a_n = \lim b_n$.

- **17.** Define Subsequence of a sequence $\{a_n\}$.
- *18.* State the **Subsequence theorem**.

PRIME NUMBER PATTERN

March 1964

Prime number pattern in the Ulam spiral