MATH 351: CLASS DISCUSSION, 19 SEPTEMBER

LIMIT THEOREMS

Review:

1. Using the error-form principle, prove that if $a_{n} \rightarrow L$, then $\left|a_{n}\right| \rightarrow|L|$. Is the converse true? Proof or counterexample.
2. If $a_{n}=\frac{25 n^{3}+n^{2}-n+2018}{5 n^{3}-13 n^{2}+1789}=5$ find an M such that $\left|\mathrm{e}_{\mathrm{n}}\right|<0.02$ for all $\mathrm{n}>\mathrm{M}$.
3. Review: Let $|\mathrm{a}|<1$. For $\mathrm{n} \geq 1$, let $S_{n}=1+a+a^{2}+\cdots+a^{n}$.

Using the error-form principle, prove that $\lim _{n \rightarrow \infty} S_{n}=\frac{1}{1-a}$. Hint: Show that $e_{n}=-\frac{a^{n+1}}{1-a}$.
4. State the three main limit theorems for sequences and prove each using the error-form principle.
5. Using the limit theorems prove that

$$
\lim _{n \rightarrow \infty} \frac{25 n^{3}+n^{2}-n+2018}{5 n^{3}-13 n^{2}+1789}=5
$$

6. (Review of calculus) Derive a recursive form of Newton's method for finding roots of a differentiable function $y=f(x)$.
7. (a) Applying Newton's method to the polynomial $p(x)=x^{2}-2$, find a recursive sequence that converges to $\sqrt{2}$. Use the error-form principle to prove the result.
(b) Practice exercise: using (a) as a guide, find a recursive sequence that converges to $\sqrt{5}$.

Two more major theorems of the week (in addition to the three limit theorems that you have stated in question 4 above.)
8. Prove the Squeeze theorem, viz:

Given three sequences, $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\}$ satisfying $a_{n} \leq b_{n} \leq c_{n}$ for $n \gg 1$.
Suppose that $a_{n} \rightarrow L$ and $c_{n} \rightarrow L$. Then $b_{n} \rightarrow L$.
9. Example: Let α be given. Then $\sqrt[n]{2+\cos n \alpha} \rightarrow 1$.

Hint: Use the result of exercise $3.4 / 5$, viz. If $\mathrm{c}>0$ then $\sqrt[n]{c} \rightarrow 1$.
10. Example: Prove that $\lim _{n \rightarrow \infty} \frac{\ln (n!)}{n \ln n}=1$. Hint: $\ln (n!)=\ln 1+\ln 2+\ln 3+\cdots+\ln n$
11. Find $\lim n(a+\cos n \pi)$ for different values of a.
12. Prove the Sequence location theorem, viz:

If $\left\{a_{n}\right\}$ converges and $\lim \mathrm{a}_{\mathrm{n}}<\mathrm{M}$, then $\mathrm{a}_{\mathrm{n}}<\mathrm{M}$ for $\mathrm{n} \gg 1$.
13. State the corresponding version of the Sequence location theorem for a convergent sequence bounded below.
14. (a) Prove the Limit location theorem, viz:

If $\left\{a_{n}\right\}$ converges and $\exists M$ such that $a_{n} \leq M$ for $n \gg 1$, then $\lim _{n \rightarrow \infty} a_{n} \leq M$.
(b) State the corresponding version of the Limit location theorem for a convergent sequence bounded below.
15. Prove the following useful Corollary to the LLT, viz. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be convergent sequences and assume that $a_{n} \leq b_{n}$ for $n \gg 1$. Then $\lim a_{n}=\lim b_{n}$.

Exercises from Apostol

In Exercises 1 through 10, compute the limits and explain which limit theorems you are using in each case.

| 1. $\lim _{x \rightarrow 2} \frac{1}{x^{2}}$. 8. $\lim _{x \rightarrow 0} \frac{x^{2}-a^{2}}{x^{2}+2 a x+a^{2}}, \quad a \neq 0$.
 2. $\lim _{x \rightarrow 0} \frac{25 \mathrm{x} 3+2}{75 \times 7=2}$. 9. $\lim _{t \rightarrow 0} \tan t$.
 3. $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$. 10. $\lim _{t \rightarrow 0}\left(\sin 2 t+t^{2} \cos 5 t\right)$.
 4. $\lim _{x \rightarrow 1} \frac{2 x^{2}-3 x+1}{x-1}$,
 5 $\lim _{h \rightarrow 0} \frac{(t+h)^{2}-t^{2}}{h}$.
 6. $\lim _{x \rightarrow 0} \frac{x^{2}-a^{2}}{x^{2}+2 a x+a^{2}}$, $a \neq 0$.
 7. $\lim _{a \rightarrow 0} \frac{x^{2}-a^{2}}{x^{2}+2 a x+a^{2}}$, $\mathrm{x} \neq 0$. |
| :--- | :--- | :--- |

22. A function f is defined as follows:

$$
f(x)= \begin{cases}\sin x & \text { if } x \leq c \\ a x+b & \text { if } x>c\end{cases}
$$

where a, b, c are constants. If \boldsymbol{b} and c are given, find all values of \boldsymbol{a} (if any exist) for whichf is continuous at the point $\mathrm{x}=c$.
23. Solve Exercise 22 if f is defined as follows:

$$
f(x)= \begin{cases}2 \cos x & \text { if } \quad x \leq c, \\ a x^{2}+b & \text { if } \quad x>c .\end{cases}
$$

Calculus has its limits.

- Anonymous

