MATH 351: CLASS DISCUSSION, 24 SEPTEMBER

SUBSEQUENCES; NESTED INTERVALS THEOREM

Review:

1. Example: Let α be given. Then $\sqrt[n]{2+\cos n \alpha} \rightarrow 1$.
2. Example: Prove that $\lim _{n \rightarrow \infty} \frac{\ln (n!)}{n \ln n}=1$. Hint: $\ln (n!)=\ln 1+\ln 2+\ln 3+\cdots+\ln n$.

Note: This is a simplified version of Sterling's formula.
3. Prove the Sequence Location Theorem, viz:

If $\left\{a_{n}\right\}$ converges and $\lim \mathrm{a}_{\mathrm{n}}<\mathrm{M}$, then $\mathrm{a}_{\mathrm{n}}<\mathrm{M}$ for $\mathrm{n} \gg 1$.
4. State the corresponding version of the Sequence location theorem for a convergent sequence bounded below.
5. (a) Prove the Limit Location Theorem, viz:

If $\left\{a_{n}\right\}$ converges and $\exists M$ such that $a_{n} \leq M$ for $n \gg 1$, then $\lim _{n \rightarrow \infty} a_{n} \leq M$.
(b) State the corresponding version of the Limit location theorem for a convergent sequence bounded below.
6. Prove the following useful Corollary to the LLT, viz. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be convergent sequences and assume that
$a_{n} \leq b_{n}$ for $n \gg 1$. Then $\lim a_{n} \leq \lim b_{n}$.
7. Define subsequence of a sequence $\left\{a_{n}\right\}$. Consider the sequence $1,2,1,2,3,1,2,3,4,1, \ldots$

Find several convergent subsequences and several divergent sequences.
8. (a) If $\left\{a_{n}\right\}$ is monotone for $n \gg 1$, is every subsequence of $\left\{a_{n}\right\}$ monotone for $n \gg 1$?
(b) If $\left\{a_{n}\right\}$ is bounded for $n \gg 1$, is every subsequence of $\left\{a_{n}\right\}$ bounded for $n \gg 1$?
(c) If $\mathrm{a}_{\mathrm{n}} \rightarrow \infty$, must every subsequence $\mathrm{b}_{\mathrm{n}} \rightarrow \infty$?
9. Find an example of a sequence that has countably many subsequences each having a distinct limit.
10. Find an example of a sequence that has uncountably many subsequences, each having a distinct limit.
11. State and prove the Subsequence Theorem.
12. Prove, using the subsequence theorem, that the sequence $\left\{\sin \left(\frac{n \pi}{2}\right)\right\}$ does not converge.
13. Prove, using the subsequence theorem, that the sequence $\{\sin n\}$ does not converge.

Hint: Consider the region where $\sin n \geq \frac{\sqrt{2}}{2}$.
14. What is meant by a nested sequence of intervals? Give several examples, some of which have intersection (a) containing only one point; (b) containing infinitely many points; (c) empty.
15. State the Nested Intervals Theorem. Give a proof. Can any of the hypotheses be eliminated or weakened?
16. Show that, given any $\alpha \in \mathbb{R}$, there exists a sequence of nested intervals having intersection $\{\alpha\}$.
17. Example. Let $a_{0}=0$, and for $n \geq 1$, let $a_{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+(-1)^{n-1} \frac{1}{n}$

Using the nested interval theorem, prove that $\left\{a_{n}\right\}$ converges.
18. Define cluster point of a sequence.
19. Find any (and all) cluster points for each of the following sequences:
(a) $1 / 2,1 / 3,1 / 4,1 / 5, \ldots$
(b) $1,2,3,4,5, \ldots$
(c) $1,0,1,0,1,0, \ldots$
(d) $1,1,2,1,2,3,1,2,3,4,1,2,3,4,5, \ldots$
(e) $2,3,5,7,11,13, \ldots$

