MATH 351: CLASS DISCUSSION, 24 SEPTEMBER

SUBSEQUENCES; NESTED INTERVALS THEOREM

Review:

- **1.** *Example:* Let α be given. Then $\sqrt[n]{2 + \cos n\alpha} \rightarrow 1$.
- 2. *Example:* Prove that $\lim_{n \to \infty} \frac{\ln(n!)}{n \ln n} = 1$. *Hint:* $\ln(n!) = \ln 1 + \ln 2 + \ln 3 + \dots + \ln n$.

Note: This is a simplified version of Sterling's formula.

3. Prove the Sequence Location Theorem, viz:

If $\{a_n\}$ converges and $\lim a_n < M$, then $a_n < M$ for n >> 1.

- *4.* State the corresponding version of the Sequence location theorem for a convergent sequence bounded below.
- 5. (a) Prove the Limit Location Theorem, *viz:*

If $\{a_n\}$ converges and $\exists M$ such that $a_n \leq M$ for $n \gg 1$, then $\lim_{n \to \infty} a_n \leq M$.

(*b*) State the corresponding version of the Limit location theorem for a convergent sequence *bounded below*.

Prove the following useful Corollary to the LLT, *viz*. Let {a_n} and {b_n} be convergent sequences and assume that

 $a_n \leq b_n \text{ for } n >> 1.$ Then $\lim a_n \leq \lim b_n$.

- Define *subsequence* of a sequence {a_n}. Consider the sequence 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, ...
 Find several convergent subsequences and several divergent sequences.
- 8. (a) If $\{a_n\}$ is monotone for n >> 1, is every subsequence of $\{a_n\}$ monotone for n >> 1?
 - (b) If $\{a_n\}$ is bounded for n>>1, is every subsequence of $\{a_n\}$ bounded for n>>1?
 - (c) If $a_n \to \infty$, must every subsequence $b_n \to \infty$?
- 9. Find an example of a sequence that has countably many subsequences each having a distinct limit.
- **10.** Find an example of a sequence that has uncountably many subsequences, each having a distinct limit.
- **11.** State and prove the **Subsequence Theorem**.

- 12. Prove, using the subsequence theorem, that the sequence $\{\sin(\frac{n\pi}{2})\}$ does not converge.
- 13. Prove, using the subsequence theorem, that the sequence $\{\sin n\}$ does not converge.

Hint: Consider the region where $\sin n \ge \frac{\sqrt{2}}{2}$.

- *14.* What is meant by a **nested sequence of intervals**? Give several examples, some of which have intersection (a) containing only one point; (b) containing infinitely many points; (c) empty.
- *15.* State the **Nested Intervals Theorem**. Give a proof. Can any of the hypotheses be eliminated or weakened?
- **16.** Show that, given any $\alpha \in \mathbb{R}$, there exists a sequence of nested intervals having intersection $\{\alpha\}$.
- **17.** Example. Let $a_0 = 0$, and for $n \ge 1$, let $a_n = 1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots + (-1)^{n-1} \frac{1}{n}$ Using the nested interval theorem, prove that $\{a_n\}$ converges.
- **18.** Define *cluster point* of a sequence.
- *19.* Find any (and all) cluster points for each of the following sequences:
 - (a) $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$, ...
 - (b) 1, 2, 3, 4, 5, ...
 - (c) $1, 0, 1, 0, 1, 0, \dots$
 - (d) 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, ...
 - (e) 2, 3, 5, 7, 11, 13, ...