MATH 351: CLASS DISCUSSION, 26 SEPTEMBER

NESTED INTERVALS THEOREM

- 1. (a) If $\{a_n\}$ is monotone for n >> 1, is every subsequence of $\{a_n\}$ monotone for n >> 1?
 - (b) If $\{a_n\}$ is bounded for n>>1, is every subsequence of $\{a_n\}$ bounded for n>>1?
 - (c) If $a_n \to \infty$, must every subsequence $b_n \to \infty$?
- 2. Find an example of a sequence that has countably many subsequences each having a distinct limit.
- 3. State and prove the **Subsequence Theorem**.
- 4. Prove, using the subsequence theorem, that the sequence $\{\sin(\frac{n\pi}{2})\}$ does not converge.
- 5. Prove, using the subsequence theorem, that the sequence $\{\sin n\}$ does not converge.

Hint: Consider the region where $\sin n \ge \frac{\sqrt{2}}{2}$.

- 6. What is meant by a **nested sequence of intervals**? Give several examples, some of which have intersection (a) containing only one point; (b) containing infinitely many points; (c) empty.
- **7.** State the **Nested Intervals Theorem**. Give a proof. Can any of the hypotheses be eliminated or weakened?
- 8. Show that, given any $\alpha \in \mathbb{R}$, there exists a sequence of nested intervals having intersection $\{\alpha\}$.
- 9. Example. Let $a_0 = 0$, and for $n \ge 1$, let $a_n = 1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots + (-1)^{n-1} \frac{1}{n}$ Using the nested interval theorem, prove that $\{a_n\}$ converges.
- *10.* Definition: K is a *cluster point* of $\{a_n\}$ means that, for all $\varepsilon > 0$, there exist infinitely many *n* for which $|a_n K| < \varepsilon$.
- 11. Find any (and all) cluster points for each of the following sequences:
 - (a) ¹/₂, 1/3, ¹/₄, 1/5, ...

- (b) 1, 2, 3, 4, 5, ...
 (c) 1, 0, 1, 0, 1, 0, ...
 (d) 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, ...
 (e) 2, 3, 5, 7, 11, 13, ...