MATH 351

SOLUTIONS: HW II

Solutions to the following:

Mattuck

p. 32 / exercises 2.6.3, 2.6.4 (b)
p. 32 / problem 2.1
pg. 46 / exercises 3.1.1 (a) and 3.2.3
pg. 48 / problems 3.1, 3.2

Exercise 2.6.3

Prove that if $\varepsilon > 0$ is given, then $\frac{n}{n+2} \stackrel{\approx}{\epsilon} 1$, for $n \gg 1$. **Solution:** Choose $N = \frac{2}{\epsilon}$. Then, for n > N, $\left|\frac{n}{n+2} - 1\right| = \left|\frac{2}{n+2}\right| < \frac{2}{n} < \frac{2}{N} < \epsilon$

Exercise 2.6.4 (b)

Prove that $\{a_n\}$ is decreasing for n >> 1, if $a_6 = 1$ and

(b)
$$a_{n+1} = \frac{n^2 + 15}{(n+1)(n+2)} a_n$$

Solution:

(b)
$$\frac{a_{n+1}}{a_n} = \frac{n^2 + 15}{(n+1)(n+2)} < \frac{n^2 + 15}{(n+1)n} = \frac{1 + \frac{15}{n}}{1+n} < 1$$
 when $n > 6$

Problem 2.1

Let $\{a_n\}$ be a sequence. We construct from it another sequence $\{b_n\}$ as follows:

$$b_n = \frac{a_1 + a_2 + \dots + a_n}{n}$$

(a) Prove that if $\{a_n\}$ is increasing, then $\{b_n\}$ is also increasing.

(b) Prove that if $\{a_n\}$ is bounded above, then $\{b_n\}$ is also bounded above.

Solution:

Part (*a*): Assume that $\{a_n\}$ is increasing. Then $a_{n+1} \ge a_n$ for all $n \in \mathbb{N}$.

Now
$$b_{n+1} - b_n =$$

$$\frac{a_1 + a_2 + \dots + a_{n+1}}{n+1} - \frac{a_1 + a_2 + \dots + a_n}{n} =$$

$$\frac{n(a_1 + a_2 + \dots + a_{n+1}) - (n+1)(a_1 + a_2 + \dots + a_n)}{n(n+1)} =$$

$$\frac{na_{n+1} - (a_1 + a_2 + \dots + a_n)}{n(n+1)} =$$

$$\frac{(a_{n+1} - a_1) + (a_{n+1} - a_2) + \dots + (a_{n+1} - a_n)}{n(n+1)} \ge 0$$

Hence $\{b_n\}$ is increasing.

Part (b): Assume that $\{a_n\}$ is bounded above. Then, by definition, there exists $c \in \mathbf{R}$ such that $a_n \leq c$ for all $n \geq 1$. Thus

$$a_1 + a_2 + \ldots + a_n \le c + c + \ldots + c = nc$$

and hence, for all $n \ge 1$:

$$b_n = \frac{a_1 + a_2 + \dots + a_n}{n} \le \frac{nc}{n} = c$$

Thus $\{b_n\}$ is bounded above.

Exercise 3.1.1 (a)

Show that $\lim_{n \to \infty} \frac{\sin n - \cos n}{n} = 0$ directly from the definition of limit.

Solution: Let $\varepsilon > 0$ be given.

Then, invoking the triangle inequality,

$$\left|\frac{\sin n - \cos n}{n} - 0\right| = \frac{1}{n} \left|\sin n - \cos n\right| \le \frac{1}{n} \left(|\sin n| + |\cos n|\right) \le \frac{2}{n} < \varepsilon \text{ when } n > \frac{2}{\varepsilon}$$

Exercise 3.2.3 (a)

Let
$$a_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$
. Prove that $a_n \to 0$.

(a) Prove that $\{a_n\}$ converges.

Solution:

Part (a): The sequence $\{a_n\}$ is bounded above by 1 since:

$$a_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \le \frac{1}{n+1} + \frac{1}{n+1} + \dots + \frac{1}{n+1} = \frac{n}{n+1} < 1$$

Next, observe that:

$$a_{n+1} - a_n = \left(\frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n+2}\right) - \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}\right) = -\frac{1}{n+1} + \frac{1}{2n+1} + \frac{1}{2n+2} = -\frac{1}{n+1} + \frac{1}{2n+1} + \frac{1/2}{n+1} = \frac{1}{2n+1} - \frac{1/2}{n+1} = \frac{1/2}{(2n+1)(n+1)} > 0$$

Thus $\{a_n\}$ is strictly increasing.

Now, since $\{a_n\}$ is bounded above and increasing, we invoke the Completeness Theorem to conclude that $\{a_n\}$ converges.

Problem 3.1:

Let $\{a_n\}$ be a sequence. As before, let $\{b_n\}$ be defined as follows:

$$b_n = \frac{a_1 + a_2 + \dots + a_n}{n}$$

- (a) Prove that if $a_n \rightarrow 0$, then $b_n \rightarrow 0$.
- (b) Deduce from part (a) in a few lines that if $a_n \rightarrow L$, then $b_n \rightarrow L$.

Solution:

Part (a): Assume that $a_n \rightarrow 0$.

Let $\varepsilon > 0$ be given. Choose $n^* \in \mathbf{N}$, $n \ge 2$, such that $|a_n - 0| < \varepsilon$ when $n \ge n^*$.

Choose $m^* \in \mathbf{N}$ such

$$m^* \geq \left| \frac{a_1 + a_2 + \ldots + a_{n^+ - 1}}{\varepsilon} \right|$$

Next, let $r^* = max\{n^*, m^*\}$.

Thus, invoking the K ϵ -principle, $b_n \rightarrow 0$.

Part (b): Assume that $a_n \rightarrow L$.

Define $d_n = a_n - L$. We first show that $d_n \rightarrow 0$. Let $\varepsilon > 0$ be given. Then a_n is ε -close to *L* for large *n*. Using the additivity property, $d_n = a_n - L$ is ε -close to L - L = 0. So $d_n \rightarrow 0$.

Using part (a), we obtain $y_n \rightarrow 0$, where

$$y_n = \frac{d_1 + d_2 + \dots + d_n}{n}$$

Since

$$\frac{d_1 + d_2 + \dots + d_n}{n} = \frac{(a_1 - L) + (a_2 - L) + \dots + (a_n - L)}{n} = \frac{a_1 + a_2 + \dots + a_n}{n} - L = b_n - L$$

we obtain

$$b_n - L = \frac{a_1 + a_2 + \dots + a_n}{n} - L \to 0$$

Using the "ɛ-close" argument given above, we obtain:

 $b_n \rightarrow L$

Problem 3.2: To prove a^n was large if a > 1, we used "Bernoulli's inequality."

$$(1+h)^n \ge 1+nh$$
, if $h \ge 0$.

We deduced it from the binomial theorem. This inequality is actually valid for other values of h however. A sketch of the proof starts:

 $\begin{array}{rll} (1+h)^2 &=& 1+2h+h^2 \ \geq \ 1+2h, & \mbox{ since } h^2 \geq 0 \ \mbox{for all } h; \\ (1+h)^3 &=& (1+h)^2(1+h) \ \geq \ (1+2h)(1+h), & \mbox{ by the previous case}, \\ &=& 1+3h+2h^2, \\ &\geq& 1+3h \ . \end{array}$

(a) Show in the same way that the truth of the inequality for the case n implies its truth for the case n + 1. (This proves the inequality for all n by mathematical induction, since it is trivially true for n = 1.)

Solution: Assume that $h \ge 0$ and that $n \ge 0$.

Let P(n) be the statement that $(1 + h)^n \ge 1 + nh$

```
Base case: n = 0
```

LHS = $(1 + h)^0 = 1$ RHS = 1 + 0 h = 1This establishes the base case.

Inductive step: Assume that $(1 + h)^n \ge 1 + nh$.

Then $(1+h)^{n+1} = (1+h)(1+h)^n \ge (1+h)(1+h)^n \ge (1+h)(1+nh) = 1+nh+nh^2 \ge 1+h+nh = 1+(n+1)h$

This proves P(n+1) which completes induction.

(b) For what h is the inequality valid? (Try it when h = -3, n = 5.) Reconcile this with part (a).

Solution:

If $-1 \le h \le 0$, then the induction argument above remains valid.

The key observation is that, $1 + h \ge 0$ when $-1 \le h \le 0$. And so then the inequality

 $(1+h)(1+h)^n \ge (1+h)(1+nh)$ is still valid because $(1+h)^n \ge 1+nh \ge 0$.