Solutions to the following:
Mattuck
p. 32 / exercises 2.6.3, 2.6.4 (b)
p. 32 / problem 2.1
pg. 46 / exercises 3.1.1 (a) and 3.2.3
pg. 48 / problems 3.1, 3.2

Exercise 2.6.3

Prove that if $\varepsilon>0$ is given, then $\frac{n}{n+2} \approx \tilde{\epsilon} 1$, for $n \gg 1$.
Solution: Choose $N=\frac{2}{\epsilon}$.
Then, for $\mathrm{n}>\mathrm{N},\left|\frac{n}{n+2}-1\right|=\left|\frac{2}{n+2}\right|<\frac{2}{n}<\frac{2}{N}<\epsilon$

Exercise 2.6.4 (b)

Prove that $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ is decreasing for $\mathrm{n} \gg 1$, if $\mathbf{a}_{6}=1$ and
(b) $a_{n+1}=\frac{n^{2}+15}{(n+1)(n+2)} a_{n}$

Solution:

$$
\text { (b) } \quad \frac{a_{n+1}}{a_{n}}=\frac{n^{2}+15}{(n+1)(n+2)}<\frac{n^{2}+15}{(n+1) n}=\frac{1+\frac{15}{n}}{1+n}<1 \text { when } n>6
$$

Problem 2.1

Let $\left\{a_{n}\right\}$ be a sequence. We construct from it another sequence $\left\{b_{n}\right\}$ as follows:

$$
b_{n}=\frac{a_{1}+a_{2}+\ldots+a_{n}}{n}
$$

(a) Prove that if $\left\{a_{n}\right\}$ is increasing, then $\left\{b_{n}\right\}$ is also increasing.
(b) Prove that if $\left\{a_{n}\right\}$ is bounded above, then $\left\{b_{n}\right\}$ is also bounded above.

Solution:

Part (a): Assume that $\left\{a_{n}\right\}$ is increasing. Then $a_{n+1} \geq a_{n}$ for all $n \in \mathbf{N}$.

$$
\begin{array}{c:}
\text { Now } b_{n+1}-b_{n}= \\
\frac{a_{1}+a_{2}+\ldots+a_{n+1}}{n+1}-\frac{a_{1}+a_{2}+\ldots+a_{n}}{n}= \\
\frac{n\left(a_{1}+a_{2}+\ldots+a_{n+1}\right)-(n+1)\left(a_{1}+a_{2}+\ldots+a_{n}\right)}{n(n+1)}= \\
\frac{n a_{n+1}-\left(a_{1}+a_{2}+\ldots+a_{n}\right)}{n(n+1)}= \\
\frac{\left(a_{n+1}-a_{1}\right)+\left(a_{n+1}-a_{2}\right)+\ldots+\left(a_{n+1}-a_{n}\right)}{n(n+1)} \geq 0
\end{array}
$$

Hence $\left\{b_{n}\right\}$ is increasing.
Part (b): Assume that $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ is bounded above. Then, by definition, there exists $c \in \mathbf{R}$ such that $\mathrm{a}_{\mathrm{n}} \leq \mathrm{c}$ for all $\mathrm{n} \geq 1$. Thus

$$
a_{1}+a_{2}+\ldots+a_{n} \leq c+c+\ldots+c=n c
$$

and hence, for all $\mathrm{n} \geq 1$:

$$
b_{n}=\frac{a_{1}+a_{2}+\ldots+a_{n}}{n} \leq \frac{n c}{n}=c
$$

Thus $\left\{b_{n}\right\}$ is bounded above.

Exercise 3.1.1 (a)

Show that $\lim _{n \rightarrow \infty} \frac{\sin n-\cos n}{n}=0$ directly from the definition of limit.
Solution: Let $\varepsilon>0$ be given.
Then, invoking the triangle inequality,
$\underline{\left|\frac{\sin n-\cos n}{n}-0\right|=\frac{1}{n}|\sin n-\cos n| \leq \frac{1}{n}(|\sin n|+|\cos n|) \leq \frac{2}{n}<\varepsilon \text { when } n>\frac{2}{\varepsilon}}$

Exercise 3.2.3 (a)

Let $a_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}$. Prove that $\mathrm{a}_{\mathrm{n}} \rightarrow 0$.
(a) Prove that $\left\{a_{n}\right\}$ converges.

Solution:

Part (a): The sequence $\left\{a_{n}\right\}$ is bounded above by 1 since:

$$
a_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n} \leq \frac{1}{n+1}+\frac{1}{n+1}+\ldots+\frac{1}{n+1}=\frac{n}{n+1}<1
$$

Next, observe that:

$$
\begin{aligned}
a_{n+1}-a_{n} & = \\
& \left(\frac{1}{n+2}+\frac{1}{n+3}+\ldots+\frac{1}{2 n+2}\right)-\left(\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2 n}\right)= \\
& -\frac{1}{n+1}+\frac{1}{2 n+1}+\frac{1}{2 n+2}= \\
& -\frac{1}{n+1}+\frac{1}{2 n+1}+\frac{1 / 2}{n+1}= \\
& \frac{1}{2 n+1}-\frac{1 / 2}{n+1}= \\
& \frac{1 / 2}{(2 n+1)(n+1)}>0
\end{aligned}
$$

Thus $\left\{a_{n}\right\}$ is strictly increasing.
Now, since $\left\{a_{n}\right\}$ is bounded above and increasing, we invoke the Completeness Theorem to conclude that $\left\{a_{n}\right\}$ converges.

Problem 3.1:

Let $\left\{a_{n}\right\}$ be a sequence. As before, let $\left\{b_{n}\right\}$ be defined as follows:

$$
b_{n}=\frac{a_{1}+a_{2}+\ldots+a_{n}}{n}
$$

(a) Prove that if $a_{n} \rightarrow 0$, then $b_{n} \rightarrow 0$.
(b) Deduce from part (a) in a few lines that if $a_{n} \rightarrow L$, then $b_{n} \rightarrow L$.

Solution:

Part (a): Assume that $\mathrm{a}_{\mathrm{n}} \rightarrow 0$.
Let $\varepsilon>0$ be given. Choose $\mathrm{n}^{*} \in \mathbf{N}, \mathrm{n} \geq 2$, such that $\left|\mathrm{a}_{\mathrm{n}}-0\right|<\varepsilon$ when $\mathrm{n} \geq \mathrm{n}^{*}$.
Choose $\mathrm{m}^{*} \in \mathbf{N}$ such

$$
m^{*} \geq\left|\frac{a_{1}+a_{2}+\ldots+a_{n^{+}-1}}{\varepsilon}\right|
$$

Next, let $\mathrm{r}^{*}=\max \left\{\mathrm{n}^{*}, \mathrm{~m}^{*}\right\}$.

Thus, invoking the $\mathrm{K} \varepsilon$-principle, $\mathrm{b}_{\mathrm{n}} \rightarrow 0$.

Part (b): Assume that $\mathrm{a}_{\mathrm{n}} \rightarrow \mathrm{L}$.
Define $\mathrm{d}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n}}-\mathrm{L}$. We first show that $\mathrm{d}_{\mathrm{n}} \rightarrow 0$. Let $\varepsilon>0$ be given. Then a_{n} is ε-close to L for large n. Using the additivity property, $\mathrm{d}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n}}-\mathrm{L}$ is ε-close to $L-L=0$. So $\mathrm{d}_{\mathrm{n}} \rightarrow 0$.

Using part (a), we obtain $\mathrm{y}_{\mathrm{n}} \rightarrow 0$, where

$$
y_{n}=\frac{d_{1}+d_{2}+\ldots+d_{n}}{n}
$$

Since

$$
\frac{d_{1}+d_{2}+\ldots+d_{n}}{n}=\frac{\left(a_{1}-L\right)+\left(a_{2}-L\right)+\ldots+\left(a_{n}-L\right)}{n}=\frac{a_{1}+a_{2}+\ldots+a_{n}}{n}-L=b_{n}-L
$$

we obtain
$b_{n}-L=\frac{a_{1}+a_{2}+\ldots+a_{n}}{n}-L \rightarrow 0$
Using the " ε-close" argument given above, we obtain:
$b_{n} \rightarrow L$

Problem 3.2: To prove a^{n} was large if $a>1$, we used "Bernoulli's inequality."

$$
(1+h)^{n} \geq 1+n h, \quad \text { if } h \geq 0 .
$$

We deduced it from the binomial theorem. This inequality is actually valid for other values of h however. A sketch of the proof starts:

$$
\begin{aligned}
(1+h)^{2} & =1+2 h+h^{2} \geq 1+2 h, \quad \text { since } h^{2} \geq 0 \text { for all } h ; \\
(1+h)^{3} & =(1+h)^{2}(1+h) \geq(1+2 h)(1+h), \quad \text { by the previous case }, \\
& =1+3 h+2 h^{2}, \\
& \geq 1+3 h .
\end{aligned}
$$

(a) Show in the same way that the truth of the inequality for the case n implies its truth for the case $n+1$. (This proves the inequality for all n by mathematical induction, since it is trivially true for $n=1$.)

Solution: Assume that $\mathrm{h} \geq 0$ and that $n \geq 0$.
Let $\mathrm{P}(\mathrm{n})$ be the statement that $(1+\mathrm{h})^{\mathrm{n}} \geq 1+n h$
Base case: $\mathrm{n}=0$

$$
\begin{aligned}
& \text { LHS }=(1+h)^{0}=1 \\
& \text { RHS }=1+0 \mathrm{~h}=1
\end{aligned}
$$

This establishes the base case.
Inductive step: Assume that $(1+h)^{n} \geq 1+n h$.
Then $(1+h)^{n+1}=(1+h)(1+h)^{n} \geq(1+h)(1+h)^{n} \geq(1+h)(1+n h)=1+n h+n h^{2} \geq$
$1+h+n h=1+(n+1) h$
This proves $\mathrm{P}(\mathrm{n}+1)$ which completes induction.
(b) For what h is the inequality valid? (Try it when $h=-3, n=5$.)

Reconcile this with part (a).

Solution:

If $-1 \leq h \leq 0$, then the induction argument above remains valid.
The key observation is that, $1+h \geq 0$ when $-1 \leq h \leq 0$. And so then the inequality
$(1+h)(1+h)^{n} \geq(1+h)(1+n h)$ is still valid because $(1+h)^{n} \geq 1+n h \geq 0$.

