
Math 351             solutions:  HW II 

Solutions to the following:  
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p. 32 / problem 2.1     
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Exercise 2.6.3 

Prove that if 𝜀 > 0 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛, 𝑡ℎ𝑒𝑛 
𝑛

𝑛+2
  𝜖

≈ 1, 𝑓𝑜𝑟 𝑛 ≫ 1. 

Solution:  Choose 𝑁 =
2

𝜖
. 

Then, for n > N,  |
𝑛

𝑛+2
− 1| = |

2

𝑛+2
| <

2

𝑛
<

2

𝑁
< 𝜖 

 

 

Exercise 2.6.4 (b) 

Prove that {an} is decreasing for n>>1, if a6 = 1 and 

(b)   𝑎𝑛+1 =  
𝑛2+15

(𝑛+1)(𝑛+2)
  𝑎𝑛 

 

Solution: 

(𝑏)     
𝑎𝑛+1

𝑎𝑛
=

𝑛2 + 15

(𝑛 + 1)(𝑛 + 2)
<

𝑛2 + 15

(𝑛 + 1)𝑛
=

1 +
15
𝑛

1 + 𝑛
< 1  𝑤ℎ𝑒𝑛 𝑛 > 6 

 

                                                
 

Problem 2.1     

 
Let {an} be a sequence.  We construct from it another sequence {bn} as follows:   

n

aaa
b n

n




...21

 

(a)  Prove that if {an} is increasing, then {bn} is also increasing. 



(b)  Prove that if {an} is bounded above, then {bn} is also bounded above. 

 Solution:     

Part (a):   Assume that {an} is increasing.  Then an+1  an for all nN. 

Now 𝑏𝑛+1 − 𝑏𝑛 = 

 

Hence {bn} is increasing. 

Part (b):   Assume that {an} is bounded above.   Then, by definition, there exists cR such that an  c for all  

n  1.  Thus  

nccccaaa n  ......21  

and hence, for all n  1: 

c
n

nc

n

aaa
b n

n 
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
...21

 

Thus {bn} is bounded above. 

 
 

 

Exercise 3.1.1 (a) 

Show that lim
𝑛→∞

𝑠𝑖𝑛 𝑛−𝑐𝑜𝑠 𝑛

𝑛
= 0  directly from the definition of limit. 

Solution:    Let 𝜀 > 0 𝑏𝑒 𝑔𝑖𝑣𝑒𝑛. 

Then, invoking the triangle inequality, 

 |
𝑠𝑖𝑛 𝑛−𝑐𝑜𝑠 𝑛

𝑛
− 0| =  

1

𝑛
 |𝑠𝑖𝑛 𝑛 − 𝑐𝑜𝑠 𝑛| ≤

1

𝑛
 (|𝑠𝑖𝑛 𝑛|  + |𝑐𝑜𝑠 𝑛|) ≤

2

𝑛
< 𝜀 𝑤ℎ𝑒𝑛  𝑛 >

2

𝜀
 



                           

Exercise 3.2.3 (a) 

Let 𝑎𝑛 =  
1

𝑛+1
+

1

𝑛+2
+ ⋯ +

1

2𝑛
.     Prove that an → 0. 

(a)  Prove that {an} converges. 

Solution:     

Part (a):  The sequence {an} is bounded above by 1 since:  

𝒂𝒏 =  
𝟏

𝒏+𝟏
+

𝟏

𝒏+𝟐
+ ⋯ +

𝟏

𝟐𝒏
 ≤  

𝟏

𝒏+𝟏
+

𝟏

𝒏+𝟏
+ … + 

𝟏

𝒏+𝟏
=

𝒏

𝒏+𝟏
< 𝟏  

Next, observe that: 

 

𝑎𝑛+1 − 𝑎𝑛 = 

 

Thus {an} is strictly increasing. 

Now, since {an} is bounded above and increasing, we invoke the Completeness Theorem to conclude that {an} 

converges. 

   

 

Problem 3.1:   

Let {an} be a sequence.  As before, let {bn} be defined as follows: 

n

aaa
b n

n




...21

 

(a)   Prove that if an → 0, then bn → 0. 

(b)   Deduce from part (a) in a few lines that if an → L, then bn → L. 



Solution:   

Part (a):   Assume that an → 0. 

Let ε > 0 be given.  Choose n* N, n  2, such that |an – 0| < ε when n  n*.   

Choose m* N such  


121*

...



 n
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m

 

Next, let r* = max{n*, m*}. 

 

Thus, invoking the K-principle, bn 0. 

 

 Part (b):   Assume that an → L. 

Define dn = an – L.   We first show that dn → 0.  Let  > 0 be given.  Then an is -close to L for large n.  Using 

the additivity property, dn = an – L is -close to L – L = 0.  So dn → 0.   

Using part (a), we obtain yn 0, where 

 

 

Since 

     
LbL

n

aaa

n

LaLaLa

n

ddd
n

nnn 






 ......... 212121

 
 

 we obtain 

0
...21 


 L
n
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Lb n

n

 

Using the “-close”argument given above, we obtain: 

Lbn   

 

 

 

n
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n
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Problem 3.2:  To prove an was large if a > 1, we used “Bernoulli’s inequality.” 

 

Solution:  Assume that h ≥ 0 and that 𝑛 ≥ 0. 

Let P(n) be the statement that (1 + h)n ≥ 1 + 𝑛ℎ 

Base case:  n = 0 

LHS = (1 + ℎ)0 = 1 

RHS = 1 + 0 h = 1  

This establishes the base case. 

Inductive step:  Assume that (1 + ℎ)𝑛 ≥ 1 + 𝑛ℎ. 

 Then  (1 + ℎ)𝑛+1 = (1 + ℎ)(1 + ℎ)𝑛 ≥ (1 + ℎ)(1 + ℎ)𝑛 ≥ (1 + ℎ)(1 + 𝑛ℎ) = 1 + 𝑛ℎ + 𝑛ℎ2 ≥ 

1 + ℎ + 𝑛ℎ = 1 + (𝑛 + 1)ℎ 

This proves P(n+1) which completes induction. 

 

Solution:   

If −1 ≤ ℎ ≤ 0, then the induction argument above remains valid.   

The key observation is that, 1 + ℎ ≥ 0 𝑤ℎ𝑒𝑛 − 1 ≤ ℎ ≤ 0. And so then the inequality 

(1 + ℎ)(1 + ℎ)𝑛 ≥ (1 + ℎ)(1 + 𝑛ℎ) is still valid because (1 + ℎ)𝑛 ≥ 1 + 𝑛ℎ ≥ 0.  


