
Math 351             solutions:  HW III 

Solutions to the following:  

Mattuck Submit:   

pg 47 / exercise 3.6.1 (a)  

pg 48 / exercise 3.7.1 

pg 73 / exercise 5.1.4 

pg 74 / exercise 5.2.4 

pg 75 / problem 5.1(a, b) 

 

 

Exercise 3.6.1 

Prove the following without attempting to evaluate the limt explicitly. 

lim
𝑛→∞

∫(𝑙𝑛 𝑥 )𝑛 𝑑𝑥 = 0
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Solution:    Observe that, on the interval [1, 2], ln x is non-negative.  Also note that ln 2 ≤ ln e = 1. 

Since y = ln x is an increasing function,  ∀𝑥 ∈ [1, 2]  (ln 𝑥)𝑛  ≤ (ln 2)𝑛 

Recall that, for 0 < a < 1, 𝑎𝑛 → 0.   

Next, let 𝜀 > 0 𝑏𝑒 𝑔𝑖𝑣𝑒𝑛.   𝐶ℎ𝑜𝑜𝑠𝑒 𝑁 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ (ln 2)𝑛 <  𝜀 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑁. 

Using properties of the Riemann integral: 

∫(𝑙𝑛 𝑥 )𝑛 𝑑𝑥 ≤
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∫(𝑙𝑛 2 )𝑛 𝑑𝑥 = 

2

1

(𝑙𝑛 2 )𝑛 < 𝜀 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑁.  

                                                
 

 Exercise 3.7.1:   Show that the sequence {an}, defined below, converges to 0. 
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Solution:     Let  > 0 be given.   Let * = min{, ½}.    Define fn(x) = (1 – x2)n for 0   x  1,  and let b = f(*).  

Notice that fn is a decreasing non-negative function on [0, 1] with maximum value of 1 at x = 0. 

Since 0 < b < 1, it follows from Theorem 3.4 that bn → 0.  

Choose M such that | bn – 0| < * when n  M.   Now, using basic properties of the Riemann integral, for n > 

M: 
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Thus, invoking the K-principle, we obtain the desired result: an → 0.
 

                                                
 

Exercise 5.1.4    

Given that an/bn →L, bn ≠ 0 for all nN, and bn→0, prove that an→0. 

Proof: 

Invoking the Product Rule for limits we know that the product of two convergent sequences converges:   Thus  

an = (an /bn) (bn) converges and its limit is the product of the limits of the two convergent sequences: 

lim an = lim (an /bn) lim bn = (L) (0) = 0. 

                                                
 

Exercise 5.2.4   
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Prove that {an} converges and find its limit. 

Proof: 

 We conjecture that lim an = ln 2.  To prove this we compare area under the curve y = 1/x from x = n+1 to x = 

2n+1 with upper rectangles of base width 1.   This area is smaller than an.  Hence  
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Similarly, we compare the area under the curve y = 1/x from x = n + 1 to x = 2n+1 with lower rectangles of 

base width 1.   This area is smaller than an.  Thus 
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Finally:   
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Since, using the laws of limits, (2n+1)/(n+1) = (2+(1/n))/(1+(1/n)) →2, ln((2n+1)/n )→ln 2 and since 



 (2n)/(n–1) →2, ln((2n)/(n–1))→ln 2.  Invoking the Squeeze Theorem, we obtain:  an → ln 2.   

                                                
 

Problem 5.1 (a)    If an ≥ 0 for all nN and an → L, then (an)1/2 → L1/2. 

Criticize the “proof” given. 

Solution:   This “proof” assumes that 𝑙𝑖𝑚 √𝑎𝑛 = 𝑀 exists.  This is a result which must be proven! 

_____________________________________________________________________ 

 

Problem 5.1 (b)    If an ≥ 0 for all nN and an → L, then (an)1/2 → L1/2. 

 

Solution: Note that the Limit Location Theorem implies that L ≥ 0; so L1/2 is real.   

Case I:  L  0 

Let en =  (an)
1/2 – L1/2 

Let  > 0 be given.  Then   
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Case II:  L = 0 

Let > 0 be given.  Then, since an → 0,  |an – 0| <  2  for n >>1.   

Hence (an)
1/2 <   for n >>1.   

Thus (an)
1/2  → 0. 
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