Solutions to the following:

Mattuck Submit:
pg 47 / exercise 3.6.1 (a)
pg 48 / exercise 3.7.1
pg 73 / exercise 5.1.4
pg 74 / exercise 5.2.4
pg 75 / problem 5.1(a, b)

Exercise 3.6.1

Prove the following without attempting to evaluate the limt explicitly.

$$
\lim _{n \rightarrow \infty} \int_{1}^{2}(\ln x)^{n} d x=0
$$

Solution: Observe that, on the interval [1, 2], $\ln \mathrm{x}$ is non-negative. Also note that $\ln 2 \leq \ln \mathrm{e}=1$.
Since $\mathrm{y}=\ln \mathrm{x}$ is an increasing function, $\forall x \in[1,2](\ln x)^{n} \leq(\ln 2)^{n}$
Recall that, for $0<\mathrm{a}<1, a^{n} \rightarrow 0$.
Next, let $\varepsilon>0$ be given. Choose N for which $(\ln 2)^{n}<\varepsilon$ for all $n \geq N$.
Using properties of the Riemann integral:

$$
\int_{1}^{2}(\ln x)^{n} d x \leq \int_{1}^{2}(\ln 2)^{n} d x=(\ln 2)^{n}<\varepsilon \text { for all } n \geq N
$$

Exercise 3.7.1: Show that the sequence $\left\{a_{n}\right\}$, defined below, converges to 0 .

$$
a_{n}=\int_{0}^{1}\left(1-x^{2}\right)^{n} d x
$$

Solution: Let $\varepsilon>0$ be given. Let $\varepsilon^{*}=\min \{\varepsilon, 1 / 2\}$. Define $f_{n}(x)=\left(1-x^{2}\right)^{n}$ for $0 \leq x \leq 1$, and let $b=f\left(\varepsilon^{*}\right)$.
Notice that f_{n} is a decreasing non-negative function on [0, 1] with maximum value of 1 at $x=0$.
Since $0<b<1$, it follows from Theorem 3.4 that $b^{n} \rightarrow 0$.
Choose M such that $\left|b^{n}-0\right|<\varepsilon^{*}$ when $n \geq M$. Now, using basic properties of the Riemann integral, for $n>$ M:
$\left|a_{n}-0\right|=\int_{0}^{1}\left(1-x^{2}\right)^{n} d x=\int_{0}^{\varepsilon^{*}}\left(1-x^{2}\right)^{n} d x+\int_{\varepsilon^{*}}^{1}\left(1-x^{2}\right)^{n} d x<\left(\varepsilon^{*}\right)(1)+\left(1-\varepsilon^{*}\right) b^{n}<\varepsilon^{*}+\left(1-\varepsilon^{*}\right) \varepsilon^{*}<2 \varepsilon^{*}<2 \varepsilon$
Thus, invoking the Kع-principle, we obtain the desired result: $a_{n} \rightarrow 0$.

Exercise 5.1.4

Given that $\mathrm{a}_{\mathrm{n}} / \mathrm{b}_{\mathrm{n}} \rightarrow \mathrm{L}, \mathrm{b}_{\mathrm{n}} \neq 0$ for all $\mathrm{n} \in \mathbf{N}$, and $\mathrm{b}_{\mathrm{n}} \rightarrow 0$, prove that $\mathrm{a}_{\mathrm{n}} \rightarrow 0$.
Proof:
Invoking the Product Rule for limits we know that the product of two convergent sequences converges: Thus $a_{n}=\left(a_{n} / b_{n}\right)\left(b_{n}\right)$ converges and its limit is the product of the limits of the two convergent sequences: $\lim a_{n}=\lim \left(a_{n} / b_{n}\right) \lim b_{n}=(L)(0)=0$.

Exercise 5.2.4

Let $_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+\ldots+\frac{1}{2 n}$
Prove that $\left\{a_{n}\right\}$ converges and find its limit.

Proof:

We conjecture that $\lim a_{n}=\ln 2$. To prove this we compare area under the curve $y=1 / x$ from $x=n+1$ to $x=$ $2 n+1$ with upper rectangles of base width 1 . This area is smaller than a_{n}. Hence

$$
a_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+\ldots+\frac{1}{2 n}>\int_{n+1}^{2 n+1} \frac{1}{x} d x=\ln \frac{2 n+1}{n+1}
$$

Similarly, we compare the area under the curve $y=1 / x$ from $x=n+1$ to $x=2 n+1$ with lower rectangles of base width 1. This area is smaller than a_{n}. Thus

$$
a_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+\ldots+\frac{1}{2 n}<\int_{n}^{2 n} \frac{1}{x} d x=\ln 2
$$

Finally:

$$
\ln \frac{2 n+1}{n+1}<a_{n}<\ln 2
$$

Since, u sing the laws of limits, $(2 n+1) /(n+1)=(2+(1 / n)) /(1+(1 / n)) \rightarrow 2, \ln ((2 n+1) / n) \rightarrow \ln 2$ and since
$(2 n) /(n-1) \rightarrow 2, \ln ((2 n) /(n-1)) \rightarrow \ln 2$. Invoking the Squeeze Theorem, we obtain: $a_{n} \rightarrow \ln 2$.

Problem 5.1 (a) If $a_{n} \geq 0$ for all $n \in N$ and $a_{n} \rightarrow L$, then $\left(a_{n}\right)^{1 / 2} \rightarrow L^{1 / 2}$.
Criticize the "proof" given.
Solution: This "proof" assumes that lim $\sqrt{a_{n}}=M$ exists. This is a result which must be proven!

Problem 5.1 (b) If $a_{n} \geq 0$ for all $n \in N$ and $a_{n} \rightarrow L$, then $\left(a_{n}\right)^{1 / 2} \rightarrow L^{1 / 2}$.

Solution: Note that the Limit Location Theorem implies that $L \geq 0$; so $L^{1 / 2}$ is real.
Case I: $L \neq 0$
Let $e_{n}=\left(a_{n}\right)^{1 / 2}-L^{1 / 2}$
Let $\varepsilon>0$ be given. Then

$$
\left|e_{n}\right|=\left|\sqrt{a_{n}}-\sqrt{L}\right|=\left|\sqrt{a_{n}}-\sqrt{L}\right|\left(\frac{\sqrt{a_{n}}+\sqrt{L}}{\sqrt{a_{n}}+\sqrt{L}}\right)=\frac{\left|a_{n}-L\right|}{\sqrt{a_{n}}+\sqrt{L}} \leq \frac{\left|a_{n}-L\right|}{\sqrt{L}}<\varepsilon \text { for } n \gg 1
$$

Case II: $L=0$
Let $\varepsilon>0$ be given. Then, since $a_{n} \rightarrow 0,\left|a_{n}-0\right|<\varepsilon^{2}$ for $n \gg 1$.
Hence $\left(a_{n}\right)^{1 / 2}<\varepsilon$ for $n \gg 1$.
Thus $\left(a_{n}\right)^{1 / 2} \rightarrow 0$.

