MATH 351 SOLUTIONS: HW III

Solutions to the following:

Mattuck Submit:

pg 47 / exercise 3.6.1 (a)
pg 48 / exercise 3.7.1

pg 73 / exercise 5.1.4

pg 74 / exercise 5.2.4

pg 75/ problem 5.1(a, b)

Exercise 3.6.1

Prove the following without attempting to evaluate the limt explicitly.

2
lim [(Inx)"dx =0

n—oo
1

Solution: Observe that, on the interval [1, 2], In x is non-negative. Also note thatIn2<Ine=1.
Since y = In x is an increasing function, Vx € [1,2] (Inx)" < (In2)"

Recall that, for0<a<1, a™ = 0.

Next, let € > 0 be given. Choose N for which (In2)" < € for alln > N.

Using properties of the Riemann integral:

2 2
j(lnx)"dx SJ(ZnZ)ndx= (In2)*<eforalln=N.
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Exercise 3.7.1: Show that the sequence {an}, defined below, converges to 0.

a =|@-x*)"dx

O ey

Solution:  Let £> 0 be given. Let ¢ =min{g ¥%}. Define fo(x) = (1 —x?)" for 0 < x <1, and let b = f(&*¥).
Notice that f, is a decreasing non-negative function on [0, 1] with maximum value of 1 at x = 0.

Since 0 < b <1, it follows from Theorem 3.4 that b" — 0.

Choose M such that | b" — 0] < & when n >M. Now, using basic properties of the Riemann integral, for n >
M:



1 & 1
|8, —0] = [(@—x*)"dx = [(1—x*)"dx+ [(1—x*)"dx < (£))+ A=) <& +(1-6")e <26 < 2¢
0 0 ra

Thus, invoking the Ke-principle, we obtain the desired result: a, — O.

Exercise 5.1.4

Given that an/bn —L, bn # 0 for all neN, and bh—0, prove that an—0.
Proof:
Invoking the Product Rule for limits we know that the product of two convergent sequences converges: Thus

an = (an/bn) (bn) converges and its limit is the product of the limits of the two convergent sequences:
lim an = lim (an/bn) lim bn = (L) (0) =0.

Exercise 5.2.4

1 1 1 1
Leta, = + + +o+—
n+l n+2 n+3 2n

Prove that {an} converges and find its limit.
Proof:

We conjecture that lim a, = In 2. To prove this we compare area under the curve y = 1/x fromx =n+1tox =

2n+1 with upper rectangles of base width 1. This area is smaller than a,. Hence

1 1 1 1 2n+1
= ek —> —dx=1In
n+l n+2 n+3 2n X n+1

n+l

n

Similarly, we compare the area under the curve y = 1/x from x = n + 1 to x = 2n+1 with lower rectangles of

base width 1. This area is smaller than an. Thus

2n
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a, = + + wt—< | =dx=1In2
n+l n+2 n+3 2n © X
Finally:
In2n+1<an<ln2
n+1

Since, using the laws of limits, 2n+1)/(n+1) = (2+(1/n))/(1+(1/n)) —2, In((2n+1)/n )—In 2 and since



(2n)/(n—1) =2, In((2n)/(n—1))—In 2. Invoking the Squeeze Theorem, we obtain: an — In 2.

Problem 5.1 (a) If an>0 for all neN and an — L, then (an)¥? — L2,

Criticize the “proof” given.

Solution: This “proof” assumes that lim ,/a,, = M exists. This is a result which must be proven!

Problem 5.1 (b) If an >0 for all neN and an — L, then (an)¥? — L2,

Solution: Note that the Limit Location Theorem implies that L > 0; so L2 is real.
Casel: L =0
Let en = (an)¥? — L2

Let £> 0 be given. Then

|e"lz‘ﬁ_ﬁ‘z‘@_ﬂ‘{gjrﬁ}:\/?;%S|ai/_fl_|<g for n>>1

Casell: L=0
Let &> 0 be given. Then, since a, — 0, |an—0| < &2 for n >>1.
Hence (an)Y? < & for n >>1.
Thus (an)¥? — 0.




