MATH 351

SOLUTIONS: HW III

Solutions to the following:

Mattuck Submit:

pg 47 / exercise 3.6.1 (a) pg 48 / exercise 3.7.1 pg 73 / exercise 5.1.4 pg 74 / exercise 5.2.4 pg 75 / problem 5.1(a, b)

Exercise 3.6.1

Prove the following without attempting to evaluate the limt explicitly.

$$\lim_{n \to \infty} \int_{1}^{2} (\ln x)^n \, dx = 0$$

Solution: Observe that, on the interval [1, 2], $\ln x$ is non-negative. Also note that $\ln 2 \le \ln e = 1$.

Since y = ln x is an *increasing* function, $\forall x \in [1, 2]$ $(\ln x)^n \leq (\ln 2)^n$

Recall that, for 0 < a < 1, $a^n \rightarrow 0$.

Next, let $\varepsilon > 0$ be given. Choose N for which $(\ln 2)^n < \varepsilon$ for all $n \ge N$.

Using properties of the Riemann integral:

$$\int_{1}^{2} (\ln x)^{n} dx \leq \int_{1}^{2} (\ln 2)^{n} dx = (\ln 2)^{n} < \varepsilon \text{ for all } n \geq N.$$

Exercise 3.7.1: Show that the sequence $\{a_n\}$, defined below, converges to 0.

$$a_n = \int_0^1 (1 - x^2)^n dx$$

Solution: Let $\varepsilon > 0$ be given. Let $\varepsilon^* = \min\{\varepsilon, \frac{1}{2}\}$. Define $f_n(x) = (1 - x^2)^n$ for $0 \le x \le 1$, and let $b = f(\varepsilon^*)$. Notice that f_n is a decreasing non-negative function on [0, 1] with maximum value of 1 at x = 0. Since 0 < b < 1, it follows from Theorem 3.4 that $b^n \to 0$. Choose M such that $|b^n - 0| < \varepsilon^*$ when $n \ge M$. Now, using basic properties of the Riemann integral, for n > M:

$$|a_{n}-0| = \int_{0}^{1} (1-x^{2})^{n} dx = \int_{0}^{\varepsilon^{*}} (1-x^{2})^{n} dx + \int_{\varepsilon^{*}}^{1} (1-x^{2})^{n} dx < (\varepsilon^{*})(1) + (1-\varepsilon^{*})b^{n} < \varepsilon^{*} + (1-\varepsilon^{*})\varepsilon^{*} < 2\varepsilon^{*} < 2$$

Thus, invoking the K ε -principle, we obtain the desired result: $a_n \rightarrow 0$.

Exercise 5.1.4

Given that $a_n/b_n \rightarrow L$, $b_n \neq 0$ for all $n \in \mathbb{N}$, and $b_n \rightarrow 0$, prove that $a_n \rightarrow 0$.

Proof:

Invoking the Product Rule for limits we know that the product of two convergent sequences converges: Thus $a_n = (a_n/b_n) (b_n)$ converges and its limit is the product of the limits of the two convergent sequences: $\lim a_n = \lim (a_n/b_n) \lim b_n = (L) (0) = 0.$

Exercise 5.2.4

Let
$$a_n = \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n}$$

Prove that $\{a_n\}$ converges and find its limit.

Proof:

We conjecture that $\lim a_n = \ln 2$. To prove this we compare area under the curve y = 1/x from x = n+1 to x = 2n+1 with upper rectangles of base width 1. This area is smaller than a_n . Hence

$$a_n = \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n} > \int_{n+1}^{2n+1} \frac{1}{x} \, dx = \ln \frac{2n+1}{n+1}$$

Similarly, we compare the area under the curve y = 1/x from x = n + 1 to x = 2n+1 with lower rectangles of base width 1. This area is smaller than a_n . Thus

$$a_n = \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n} < \int_{n}^{2n} \frac{1}{x} dx = \ln 2$$

Finally:

$$\ln\frac{2n+1}{n+1} < a_n < \ln 2$$

Since, using the laws of limits, $(2n+1)/(n+1) = (2+(1/n))/(1+(1/n)) \rightarrow 2$, $ln((2n+1)/n) \rightarrow ln 2$ and since

 $(2n)/(n-1) \rightarrow 2$, $ln((2n)/(n-1)) \rightarrow ln 2$. Invoking the Squeeze Theorem, we obtain: $a_n \rightarrow ln 2$.

Problem 5.1 (a) If $a_n \ge 0$ for all $n \in N$ and $a_n \to L$, then $(a_n)^{1/2} \to L^{1/2}$.

Criticize the "proof" given.

Solution: This "proof" assumes that $\lim \sqrt{a_n} = M$ exists. This is a result which must be proven!

Problem 5.1 (b) If $a_n \ge 0$ for all $n \in N$ and $a_n \to L$, then $(a_n)^{1/2} \to L^{1/2}$.

Solution: Note that the Limit Location Theorem implies that $L \ge 0$; so $L^{1/2}$ is real.

Case I: $L \neq 0$

Let $e_n = (a_n)^{1/2} - L^{1/2}$

Let $\varepsilon > 0$ be given. Then

$$|e_n| = \left|\sqrt{a_n} - \sqrt{L}\right| = \left|\sqrt{a_n} - \sqrt{L}\right| \left(\frac{\sqrt{a_n} + \sqrt{L}}{\sqrt{a_n} + \sqrt{L}}\right) = \frac{|a_n - L|}{\sqrt{a_n} + \sqrt{L}} \le \frac{|a_n - L|}{\sqrt{L}} < \varepsilon \quad \text{for } n >> 1$$

Case II: L = 0

Let $\varepsilon > 0$ be given. Then, since $a_n \to 0$, $|a_n - 0| < \varepsilon^2$ for n >> 1. Hence $(a_n)^{1/2} < \varepsilon$ for n >> 1. Thus $(a_n)^{1/2} \to 0$.