MATH 351 SOLUTIONS: HW IV

Solutions to the following:
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Exercise 6.4.2

Solution:

Proof: Let {an} be a sequence that has the property:
AC>0 3IKe(0, 1) such | an — an+1| < CK" for n>>1.
Prove that {an} is a Cauchy sequence.
Proof:
Begin by observing that, for all m>0 and ¢>0, K™ + K™ + _ + K™ < K"/(1 — K).

Now, let &> 0 be given. Choose M such that KM < & (This can be done since |K| <1 = K" —0.)

According to what is given, 7C>0 7K (0, 1) 7T such that | an — an+1| < CK" forn >T.

Let E = max{M, T}.

Next, let i, ] >E. Without loss of generality, we may assume that j = i+p for some p>0. Then, fori,j >T:

| ai—aj| = |ai+p — ai| = | (@i+p — @i+p-1) + (Qi+p-1 — @i+p-2) + (Qi+p2—@i+p3) + ... H@iv1—a) | <

| @ixp — Aisp-1] + |isp-1 — Aitp2| + |Qisp2 — Aisps| + ... + |@is1 —ai | SCK™P +CK*PL+CK*P2 + |+ CK* <
C(K™1+ K*2+ Ki*3+  + K*P) < CKT/(1 — K) < Ce/(1 — K). Using an appropriate version of the Ke-principle,

we have shown that {an} is a Cauchy sequence.




Exercise 6.5.4

Solution: Let S and T be non-empty subsets of R and suppose that VseS VteT we have s <t.

Prove thatsup S<inf T.

Proof:

LetseS. Then vteT,s < t. Hence s is a lower bound of T, so by definition of infimum, s <inf T. Now this is

true for all se S; thus inf T is an upper bound of S. So, by definition of supremum, sup S < inf T.




Problem 6.1

Select two numbers a and b and let x, = a and let x; = b. Then continue the sequence by letting each new

term be the average of the preceding two:

Xp—1+Xn—
xn=% forn>2.

a) Prove {x,} is a Cauchy sequence.
(@) n y seq

Proof:
—1+Xp— —2— — -1 —
Note that, for all n > 2, xn — Xn-1 = ’%12& — X, = 2 Zx" 1 _In Zx" 2 (%)
X 1
Hence |x,, — x,_¢| = x’“z& — Xn-1 =3 ¥n-1 — X n-p| foralln=2. (*%)

At this point, we can use the result of exercise 6.4.2 (which you will prove in the next assignment).

(b) Find lim x,, in terms of a and b.
Proof: Since {x,,} is a Cauchy sequence, it must converge to a limit L.
Casel: b>a
Letting n > 1, we find:
Xn = Xg = (X = Xp_1) + (Xpo1 — Xp2) + (Gpog — Xp_3) + -+ (0 — %) (%)
Using (*) in part (a) we can show inductively that (x,, — x,,—1) and( x,—1 — x,—») are of opposite sign.

And using (**), we can show inductively that

Ixn - xn—ll = X1 — Xp

2n—1|
Letpu=b-a>0.
Then using (***) and (*), we have lim(x, — @) = (1 - 243 -2+ )u=2 4

Hencelimxn=a+§y:a+§(b—a):§a+§b_

Casell: b<a

Repeating a similar argument to that in case I, we find lim x,, = %a + %b




Problem 6.5a
Prove that every sequence {an} has a monotone subsequence.

Proof: Here we present a clever and concise argument given by Bartle/Sherbert (Introduction to Real
Analysis):
We say that the m™ term of the sequence, an, is a “peak” if am > as for all n >m. Note that in a decreasing
sequence, every term is a peak, while in a strictly increasing sequence, no term is a peak.

Case I: {an} has infinitely many peaks.

We list the peaks by increasing subscripts, aml’ a, ’ama’am’ams’

2
Since each term is a peak, we have @, = a, =2a, Za, Za, ..
Therefore the subsequence {amk } of peaks is a decreasing subsequence of {an} .

Case I1: {an} has a finite number (possibly 0) of peaks.

Let these peaks be listed by increasing subscripts: a,, , am,, m,, - Am

r

Let s; = m,. + 1 be the first index beyond the last peak.

Since ag, is not a peak, there exists s, > s; such that ag <as,.
Since ag, is not a peak, there exists s; > s, such that a,,< as,.

Since ag,is not a peak, there exists s, > s; such that as,<as,.

Continuing in this way, we obtain a (strictly) increasing subsequence {asj} of {a,}.




