MATH 351

Solutions to the following:

Mattuck **Submit:** pg 90 / exercise 6.4.2 pg 90 / exercise 6.5.4 pg 91 / problem 6.1 pg 91 / problem 6.5a

Exercise 6.4.2

Solution:

Proof: Let {a_n} be a sequence that has the property:

 $\exists C > 0 \ \exists K \in (0, 1) \text{ such } | a_n - a_{n+1}| < CK^n \text{ for } n >> 1.$

Prove that $\{a_n\}$ is a Cauchy sequence.

Proof:

Begin by observing that, for all m > 0 and c > 0, $K^m + K^{m+1} + ... + K^{m+c} < K^m/(1 - K)$.

Now, let $\varepsilon > 0$ be given. Choose M such that $K^M < \varepsilon$. (This can be done since $|K| < 1 \Rightarrow K^n \rightarrow 0$.) According to what is given, $\exists C > 0 \ \exists K \in (0, 1) \ \exists T$ such that $|a_n - a_{n+1}| < CK^n$ for $n \ge T$. Let $E = max\{M, T\}$. Next, let $i, j \ge E$. Without loss of generality, we may assume that j = i+p for some p > 0. Then, for $i, j \ge T$: $|a_i - a_j| = |a_{i+p} - a_i| = |(a_{i+p} - a_{i+p-1}) + (a_{i+p-1} - a_{i+p-2}) + (a_{i+p-2} - a_{i+p-3}) + ... + (a_{i+1} - a_i)| \le$ $|a_{i+p} - a_{i+p-1}| + |a_{i+p-1} - a_{i+p-2}| + |a_{i+p-2} - a_{i+p-3}| + ... + |a_{i+1} - a_i| \le CK^{i+p} + CK^{i+p-1} + CK^{i+p-2} + ... + CK^{i+1} < C(K^{i+1} + K^{i+2} + K^{i+3} + ... + K^{i+p}) < CK^T/(1 - K) < C\varepsilon/(1 - K)$. Using an appropriate version of the K ε -principle, we have shown that $\{a_n\}$ is a Cauchy sequence.

Exercise 6.5.4

Solution: Let S and T be non-empty subsets of **R** and suppose that $\forall s \in S \ \forall t \in T$ we have $s \leq t$. Prove that sup $S \leq \inf T$.

Proof:

Let $s \in S$. Then $\forall t \in T$, $s \leq t$. Hence s is a lower bound of T, so by definition of infimum, $s \leq \inf T$. Now this is true for all $s \in S$; thus inf T is an upper bound of S. So, by definition of supremum, sup $S \leq \inf T$.

Problem 6.1

Select two numbers *a* and *b* and let $x_0 = a$ and let $x_1 = b$. Then continue the sequence by letting each new term be the average of the preceding two:

$$x_n = \frac{x_{n-1} + x_{n-2}}{2}$$
 for $n \ge 2$.

(a) Prove $\{x_n\}$ is a Cauchy sequence.

Proof:

Note that, for all $n \ge 2$, $x_n - x_{n-1} = \frac{x_{n-1} + x_{n-2}}{2} - x_{n-1} = \frac{x_{n-2} - x_{n-1}}{2} = -\frac{x_{n-1} - x_{n-2}}{2}$ (*) Hence $|x_n - x_{n-1}| = \frac{x_{n-1} + x_{n-2}}{2} - x_{n-1} = \frac{1}{2}|x_{n-1} - x_{n-2}|$ for all $n \ge 2$. (**)

At this point, we can use the result of exercise 6.4.2 (which you will prove in the next assignment).

(b) Find $\lim x_n$ in terms of a and b.

Proof: Since $\{x_n\}$ is a Cauchy sequence, it must converge to a limit L.

Case I: $b \ge a$

Letting $n \ge 1$, we find:

$$x_n - x_0 = (x_n - x_{n-1}) + (x_{n-1} - x_{n-2}) + (x_{n-2} - x_{n-3}) + \dots + (x_1 - x_0) \quad (***)$$

Using (*) in part (a) we can show inductively that $(x_n - x_{n-1})$ and $(x_{n-1} - x_{n-2})$ are of opposite sign. And using (**), we can show inductively that

$$|x_n - x_{n-1}| = \frac{1}{2^{n-1}} |x_1 - x_0|$$

Let $\mu = b - a > 0$.

Then using (***) and (*), we have $\lim(x_n - a) = \left(1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \cdots\right)\mu = \frac{2}{3}\mu$

Hence $\lim x_n = a + \frac{2}{3} \mu = a + \frac{2}{3} (b - a) = \frac{1}{3}a + \frac{2}{3}b.$

Case II: b < a

Repeating a similar argument to that in case I, we find $\lim x_n = \frac{2}{3}a + \frac{1}{3}b$

Problem 6.5a

Prove that every sequence $\{a_n\}$ has a monotone subsequence.

Proof: Here we present a clever and concise argument given by Bartle/Sherbert (Introduction to Real Analysis):

We say that the m^{th} term of the sequence, a_n , is a "peak" if $a_m \ge a_n$ for all $n \ge m$. Note that in a decreasing sequence, every term is a peak, while in a strictly increasing sequence, no term is a peak.

Case I: $\{a_n\}$ has infinitely many peaks.

We list the peaks by increasing subscripts, $a_{m_1}, a_{m_2}, a_{m_3}, a_{m_4}, a_{m_5}, \dots$

Since each term is a peak, we have $a_{m_1} \ge a_{m_2} \ge a_{m_3} \ge a_{m_4} \ge a_{m_5} \ge \dots$

Therefore the subsequence $\{a_{m_k}\}$ of peaks is a decreasing subsequence of $\{a_n\}$.

Case II: $\{a_n\}$ has a finite number (possibly 0) of peaks.

Let these peaks be listed by increasing subscripts: $a_{m_1}, a_{m_2}, a_{m_3}, \dots a_{m_r}$

Let $s_1 = m_r + 1$ be the first index beyond the last peak.

Since a_{s_1} is not a peak, there exists $s_2 > s_1$ such that $a_{s_1} < a_{s_2}$.

Since a_{s_2} is not a peak, there exists $s_3 > s_2$ such that $a_{s_2} < a_{s_3}$.

Since a_{s_3} is not a peak, there exists $s_4 > s_3$ such that $a_{s_3} < a_{s_4}$.

Continuing in this way, we obtain a (strictly) increasing subsequence $\{a_{s_i}\}$ of $\{a_n\}$.