
Math 351             solutions:  HW IV 

Solutions to the following:  
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Exercise 6.4.2 

Solution:      

 Proof: Let {an} be a sequence that has the property: 

C>0  K(0, 1) such | an – an+1| < CKn   for n>>1. 

Prove that {an} is a Cauchy sequence.  

Proof: 

Begin by observing that, for all m>0 and c>0, Km + Km+1 + …+ Km+c < Km/(1 – K). 

Now, let  > 0 be given.  Choose M such that KM < .  (This can be done since |K| < 1  Kn →0.) 

According to what is given,    C>0   K(0, 1)  T such that | an – an+1| < CKn   for n  T. 

Let E = max{M, T}. 

Next, let i, j  E.  Without loss of generality, we may assume that j = i+p for some p>0.  Then, for i, j  T: 

| ai – aj | = |ai+p – ai| = | (ai+p – ai+p-1) +  (ai+p-1 – ai+p-2) +  (ai+p-2 – ai+p-3) +  ... +(ai+1 – ai) |   

| ai+p – ai+p-1| +  |ai+p-1 – ai+p-2| +  |ai+p-2 – ai+p-3| +  ... + |ai+1 – ai |   CKi+p + CKi+p-1 + CKi+p-2 + ... + CKi+1 < 

C(Ki+1+ Ki+2+ Ki+3+...+ Ki+p) < CKT/(1 – K) < Cε/(1 – K).  Using an appropriate version of the K-principle, 

we have shown that {an} is a Cauchy sequence. 

                       

  



                       

 

Exercise 6.5.4 

Solution:   Let S and T be non-empty subsets of R and suppose that sS tT we have s  t.   

Prove that sup S  inf T. 

Proof:   

Let sS.   Then  tT, s   t.  Hence s is a lower bound of T, so by definition of infimum, s  inf T.  Now this is 

true for all s S;  thus inf T is an upper bound of S.  So, by definition of supremum, sup S   inf T. 

   

                                                
 

  



                                                
 

Problem 6.1 

Select two numbers a and b and let 𝑥0 = 𝑎 𝑎𝑛𝑑 𝑙𝑒𝑡 𝑥1 = 𝑏.   Then continue the sequence by letting each new 

term be the average of the preceding two: 

𝑥𝑛 =
𝑥𝑛−1+𝑥𝑛−2

2
  for n ≥ 2. 

(a)  Prove {𝑥𝑛} 𝑖𝑠 𝑎 𝐶𝑎𝑢𝑐ℎ𝑦 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒. 

Proof: 

 Note that, for all n ≥ 2, xn – xn-1 = 
𝑥𝑛−1+𝑥𝑛−2

2
− 𝑥𝑛−1 =  

𝑥𝑛−2− 𝑥 𝑛−1

2
= −

𝑥𝑛−1− 𝑥 𝑛−2

2
   (*) 

Hence  |𝑥𝑛 − 𝑥𝑛−1| =
𝑥𝑛−1+𝑥𝑛−2

2
− 𝑥𝑛−1 =

1

2
|𝑥𝑛−1 −  𝑥 𝑛−2| for all n ≥ 2.  (**)   

At this point, we can use the result of exercise 6.4.2 (which you will prove in the next assignment). 

 

(b)   Find lim 𝑥𝑛 𝑖𝑛 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑎 𝑎𝑛𝑑 𝑏. 

Proof: Since {𝑥𝑛} 𝑖𝑠 𝑎 𝐶𝑎𝑢𝑐ℎ𝑦 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝑖𝑡 𝑚𝑢𝑠𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒 𝑡𝑜 𝑎 𝑙𝑖𝑚𝑖𝑡 𝐿. 

Case I:     b ≥ a 

Letting n ≥ 1, we find: 

 𝑥𝑛 − 𝑥0 =  (𝑥𝑛 − 𝑥𝑛−1) + ( 𝑥𝑛−1 − 𝑥𝑛−2) + (𝑥𝑛−2 − 𝑥𝑛−3) + ⋯ + (𝑥1 − 𝑥0)   (***) 

Using (*) in part (a) we can show inductively that  (𝑥𝑛 − 𝑥𝑛−1) 𝑎𝑛𝑑( 𝑥𝑛−1 − 𝑥𝑛−2) 𝑎𝑟𝑒 𝑜𝑓 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑠𝑖𝑔𝑛. 

And using (**), we can show inductively that  

|𝑥𝑛 − 𝑥𝑛−1| =
1

2𝑛−1
|𝑥1 −  𝑥0| 

Let  = b – a > 0.  

Then using (***) and (*), we have lim (𝑥𝑛 − 𝑎) = (1 −
1

2
+

1

4
−

1

8
+ ⋯ ) 𝜇 =

2

3
 𝜇  

Hence lim 𝑥𝑛 = 𝑎 +
2

3
 𝜇 = 𝑎 +

2

3
(𝑏 − 𝑎) =

1

3
𝑎 +

2

3
𝑏. 

Case II:  b < a 

Repeating a similar argument to that in case I, we find lim 𝑥𝑛 =
2

3
𝑎 +

1

3
𝑏  



 

                                                
 

Problem 6.5a 

Prove that every sequence {an} has a monotone subsequence. 

Proof:    Here we present a clever and concise argument given by Bartle/Sherbert (Introduction to Real 

Analysis): 

We say that the mth term of the sequence, an, is a “peak” if am  an for all n  m. Note that in a decreasing 

sequence, every term is a peak, while in a strictly increasing sequence, no term is a peak.  

Case I:  {an} has infinitely many peaks.   

We list the peaks by increasing subscripts, ...,,,,,
54321

mmmmm aaaaa  

Since each term is a peak, we have ...
54321
 mmmmm aaaaa  

Therefore the subsequence  
k

ma  of peaks is a decreasing subsequence of {an}  . 

Case II:   {an} has a finite number (possibly 0) of peaks.   

Let these peaks be listed by increasing subscripts:   𝑎𝑚1
, 𝑎𝑚2

, 𝑎𝑚3
, … 𝑎𝑚𝑟

   

 𝐿𝑒𝑡 𝑠1 = 𝑚𝑟 + 1 be the first index beyond the last peak.   

Since  𝑎𝑠1
 is not a peak, there exists 𝑠2  >  𝑠1 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡   𝑎𝑠1

< 𝑎𝑠2
.   

Since  𝑎𝑠2
 is not a peak, there exists 𝑠3 >  𝑠2 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡   𝑎𝑠2

< 𝑎𝑠3
.   

Since  𝑎𝑠3
is not a peak, there exists 𝑠4 >  𝑠3 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡   𝑎𝑠3

< 𝑎𝑠4
.  

Continuing in this way, we obtain a (strictly) increasing subsequence {𝑎𝑠𝑗
}  𝑜𝑓 {𝑎𝑛}. 

                       
 

 


