Solutions to the following:

Mattuck Submit:
pg 90 / exercise 6.4.2
pg 90 / exercise 6.5.4
pg 91 / problem 6.1
pg 91 / problem 6.5a

Exercise 6.4.2

Solution:

Proof: Let $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ be a sequence that has the property:
$\exists C>0 \quad \exists K \in(0,1)$ such $\left|a_{n}-a_{n+1}\right|<C K^{n}$ for $n \gg 1$.

Prove that $\left\{a_{n}\right\}$ is a Cauchy sequence.

Proof:

Begin by observing that, for all $m>0$ and $c>0, K^{m}+K^{m+1}+\ldots+K^{m+c}<K^{m} /(1-K)$.
Now, let $\varepsilon>0$ be given. Choose M such that $K^{M}<\varepsilon$. (This can be done since $|K|<1 \Rightarrow K^{n} \rightarrow 0$.)
According to what is given, $\exists C>0 \exists K \in(0,1) \exists T$ such that $\left|a_{n}-a_{n+1}\right|<C K^{n}$ for $n \geq T$.
Let $E=\max \{M, T\}$.
Next, let $i, j \geq E$. Without loss of generality, we may assume that $j=i+p$ for some $p>0$. Then, for $i, j \geq T$:
$\left|a_{i}-a_{j}\right|=\left|a_{i+p}-a_{i}\right|=\left|\left(a_{i+p}-a_{i+p-1}\right)+\left(a_{i+p-1}-a_{i+p-2}\right)+\left(a_{i+p-2}-a_{i+p-3}\right)+\ldots+\left(a_{i+1}-a_{i}\right)\right| \leq$ $\left|a_{i+p}-a_{i+p-1}\right|+\left|a_{i+p-1}-a_{i+p-2}\right|+\left|a_{i+p-2}-a_{i+p-3}\right|+\ldots+\left|a_{i+1}-a_{i}\right| \leq C K^{i+p}+C K^{i+p-1}+C K^{i+p-2}+\ldots+C K^{i+1}<$ $C\left(K^{i+1}+K^{i+2}+K^{i+3}+\ldots+K^{i+p}\right)<C K^{T} /(1-K)<C \varepsilon /(1-K)$. Using an appropriate version of the $K \varepsilon$-principle, we have shown that $\left\{a_{n}\right\}$ is a Cauchy sequence.

Exercise 6.5.4

Solution: Let S and T be non-empty subsets of \mathbf{R} and suppose that $\forall \mathrm{s} \in \mathrm{S} \forall \mathrm{t} \in \mathrm{T}$ we have $\mathrm{s} \leq \mathrm{t}$. Prove that sup $S \leq \inf T$.

Proof:

Let $s \in S$. Then $\forall t \in T, s \leq t$. Hence s is a lower bound of T, so by definition of infimum, $s \leq \inf T$. Now this is true for all $s \in S$; thus inf T is an upper bound of S. So, by definition of supremum, sup $S \leq \inf T$.

Problem 6.1

Select two numbers a and b and let $x_{0}=a$ and let $x_{1}=b$. Then continue the sequence by letting each new term be the average of the preceding two:
$x_{n}=\frac{x_{n-1}+x_{n-2}}{2}$ for $\mathrm{n} \geq 2$.
(a) Prove $\left\{x_{n}\right\}$ is a Cauchy sequence.

Proof:

Note that, for all $\mathrm{n} \geq 2, \mathrm{x}_{\mathrm{n}}-\mathrm{x}_{\mathrm{n}-1}=\frac{x_{n-1}+x_{n-2}}{2}-x_{n-1}=\frac{x_{n-2}-x_{n-1}}{2}=-\frac{x_{n-1}-x_{n-2}}{2}$
Hence $\left|x_{n}-x_{n-1}\right|=\frac{x_{n-1}+x_{n-2}}{2}-x_{n-1}=\frac{1}{2}\left|x_{n-1}-x_{n-2}\right|$ for all $\mathrm{n} \geq 2 .\left({ }^{* *}\right)$
At this point, we can use the result of exercise 6.4 .2 (which you will prove in the next assignment).
(b) Find $\lim x_{n}$ in terms of a and b.

Proof: Since $\left\{x_{n}\right\}$ is a Cauchy sequence, it must converge to a limit L.
Case I: $\quad \mathrm{b} \geq \mathrm{a}$
Letting $\mathrm{n} \geq 1$, we find:
$x_{n}-x_{0}=\left(x_{n}-x_{n-1}\right)+\left(x_{n-1}-x_{n-2}\right)+\left(x_{n-2}-x_{n-3}\right)+\cdots+\left(x_{1}-x_{0}\right) \quad(* * *)$
Using (*) in part (a) we can show inductively that $\left(x_{n}-x_{n-1}\right)$ and $\left(x_{n-1}-x_{n-2}\right)$ are of opposite sign.
And using $\left({ }^{* *}\right)$, we can show inductively that

$$
\left|x_{n}-x_{n-1}\right|=\frac{1}{2^{n-1}}\left|x_{1}-x_{0}\right|
$$

Let $\mu=\mathrm{b}-\mathrm{a}>0$.
Then using $\left({ }^{* * *}\right)$ and $\left({ }^{*}\right)$, we have $\lim \left(x_{n}-a\right)=\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\cdots\right) \mu=\frac{2}{3} \mu$
Hence $\lim x_{n}=a+\frac{2}{3} \mu=a+\frac{2}{3}(b-a)=\frac{1}{3} a+\frac{2}{3} b$.
Case II: b < a
Repeating a similar argument to that in case I, we find $\lim x_{n}=\frac{2}{3} a+\frac{1}{3} b$

Problem 6.5a

Prove that every sequence $\left\{a_{n}\right\}$ has a monotone subsequence.
Proof: Here we present a clever and concise argument given by Bartle/Sherbert (Introduction to Real Analysis):
We say that the $m^{\text {th }}$ term of the sequence, a_{n}, is a "peak" if $a_{m} \geq a_{n}$ for all $n \geq m$. Note that in a decreasing sequence, every term is a peak, while in a strictly increasing sequence, no term is a peak.
Case I: $\left\{a_{n}\right\}$ has infinitely many peaks.
We list the peaks by increasing subscripts, $a_{m_{1}}, a_{m_{2}}, a_{m_{3}}, a_{m_{4}}, a_{m_{5}}, \ldots$
Since each term is a peak, we have $a_{m_{1}} \geq a_{m_{2}} \geq a_{m_{3}} \geq a_{m_{4}} \geq a_{m_{5}} \geq \ldots$
Therefore the subsequence $\left\{a_{m_{k}}\right\}$ of peaks is a decreasing subsequence of $\left\{a_{n}\right\}$.
Case II: $\left\{a_{n}\right\}$ has a finite number (possibly 0) of peaks.
Let these peaks be listed by increasing subscripts: $a_{m_{1}}, a_{m_{2}}, a_{m_{3}}, \ldots a_{m_{r}}$
Let $s_{1}=m_{r}+1$ be the first index beyond the last peak.
Since $a_{s_{1}}$ is not a peak, there exists $s_{2}>s_{1}$ such that $a_{s_{1}}<a_{s_{2}}$.
Since $a_{s_{2}}$ is not a peak, there exists $s_{3}>s_{2}$ such that $a_{s_{2}}<a_{s_{3}}$.
Since $a_{s_{3}}$ is not a peak, there exists $s_{4}>s_{3}$ such that $a_{s_{3}}<a_{s_{4}}$.
Continuing in this way, we obtain a (strictly) increasing subsequence $\left\{a_{s_{j}}\right\}$ of $\left\{a_{n}\right\}$.

