

PART A

Definitions and statements of theorems.
PART B Each of the following assertions is false. Give an explicit counter-example to illustrate this.

1. Every sequence has at least one convergent subsequence.
2. Let $\left(\mathrm{a}_{\mathrm{n}}\right)$ be a bounded sequence and let c be a constant. Then:

$$
\lim \sup c a_{n}=c \lim \sup a_{n} .
$$

3. Let $\left(a_{n}\right)$ be a Cauchy sequence of irrational numbers. Then $\lim a_{n}$ is irrational.
4. Let $\left\{c_{n}\right\}$ be a subsequence of $\left\{a_{n}\right\}$ that is strictly increasing and let $\left\{b_{n}\right\}$ be a subsequence of $\left\{a_{n}\right\}$ that is strictly decreasing. Then $\left\{a_{n}\right\}$ is divergent.
5. Suppose that the sequence $\left\{\frac{a_{n}}{n}\right\}$ converges. Then $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ converges.
6. Let $\left\{a_{n}\right\}$ be a sequence. Suppose that $\left|a_{n+2}-a_{n+1}\right|<\left|a_{n+1}-a_{n}\right|$ for all $n \in \mathbf{N}$. Then $\left\{a_{n}\right\}$ is a Cauchy sequence.
7. If $\left\{a_{n}\right\}$ diverges then the sequence $\left\{\sin \left(a_{n}\right)\right\}$ must diverge.
8. Suppose that $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are sequences satisfying $0 \leq a_{n} \leq b_{n}$ for all $n \in \mathbf{N}$. Then if $\left\{a_{n}\right\}$ diverges it must follow that $\left\{b_{n}\right\}$ diverges.
9. If two positive series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ converge, then $\sum_{n=1}^{\infty} \frac{a_{n}}{b_{n}}$ diverges.
10. If $\sum_{n=1}^{\infty} a_{n}$ is a convergent positive series, then $\sum_{n=1}^{\infty} \sqrt{a_{n}}$ converges.
11. A sequence $\left\{a_{n}\right\}$ cannot have a countable number of cluster points.
12. If $a_{n} \rightarrow 0$ then $\sum_{n=1}^{\infty} a_{n}$ converges.
13. If the two series $\sum_{n=0}^{\infty} a_{n}$ and $\sum_{n=0}^{\infty} b_{n}$ each diverge then $\sum_{n=0}^{\infty} a_{n} b_{n}$ diverges.
14. Let A and B be non-empty bounded sets. Then $A \cup B$ is bounded and $\sup (A \cup B)=\sup A+\sup B$.
15. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be bounded sequences.

Then $\left\{a_{n} b_{n}\right\}$ is bounded and lim sup $a_{n} b_{n}=\left(\lim \sup a_{n}\right)\left(\lim \sup b_{n}\right)$.
16. Let A be a non-empty bounded set. Then $\inf \mathrm{A}<\sup \mathrm{A}$.
17. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be two sequences satisfying $a_{n}<b_{n}$ for all $n \geq 0$ and $b_{n}-a_{n} \rightarrow 0$.

Let $\mathrm{I}_{\mathrm{n}}=\left(\mathrm{a}_{\mathrm{n}}, \mathrm{b}_{\mathrm{n}}\right)$. Then $\bigcap_{n=0}^{\infty} I_{n}$ consists of a single point.

PART C

Instructions: Select any 3 of the following 4 problems. You may answer all 4 to obtain extra credit.

1. A sequence has the property that $\left|a_{n}-a_{n+1}\right| \leq 1 / n$! for $n \gg 1$. Prove that $\left\{a_{n}\right\}$ is Cauchy.
2. Consider the proof of the theorem that every Cauchy sequence $\left\{a_{n}\right\}$ converges:

First, one shows that $\left\{a_{n}\right\}$ is bounded. Secondly, one shows that there exists a convergent subsequence $\left\{a_{n_{j}}\right\}$ of $\left\{a_{n}\right\}$. Let $L=\lim a_{n_{j}}$.
Finally one must show that $\left\{a_{n}\right\}$ converges to L.
Give the proof of this last result.
3. Given a conditionally convergent series, $\sum_{n=0}^{\infty} b_{n}$, prove that the series, $\sum_{n=0}^{\infty} b_{n}{ }^{+}$, formed from its positive terms, diverges.
4. Consider the proof of the Completeness Property for sets of real numbers:

Let S be non-empty and bounded above.
We construct a sequence of nested intervals $\mathrm{I}_{\mathrm{n}}=\left[\mathrm{a}_{\mathrm{n}}, \mathrm{b}_{\mathrm{n}}\right]$ satisfying: I_{n} contains at least one point of $S, \mathrm{~b}_{\mathrm{n}}$ is an upper bound of S and $\mathrm{b}_{\mathrm{n}}-\mathrm{a}_{\mathrm{n}} \rightarrow 0$.
Invoking the Nested Intervals Theorem, there exists a point c such that $\lim a_{n}=c$ and $\lim b_{n}=c$.
Prove that $c=\sup S$.

Part D

Instructions: Select any 4 of the following 6 problems. You may answer 5 to obtain extra credit but do not try to solve all 6. To receive credit, you must show your work!

1. Let A be B be two bounded and non-empty subsets of R .

Define $A+B=\{a+b \mid a \in A, b \in B\}$. Prove that $\sup (A+B) \leq \sup A+\sup B$.
2. For each of the two given series, investigate convergence or divergence:
(a) $\sum_{1}^{\infty} \sin \left(\frac{1+n}{2+3 n^{2} \ln n}\right)$
(b) $\sum_{2}^{\infty} \frac{1}{(\ln n)^{n}}$
3. For each of the two given series, investigate convergence (conditional or absolute) or divergence:
(a) $\sum_{1}^{\infty}(-1)^{n} \frac{3^{n}(n!)^{2}}{(2 n)!}$
(b) $\sum_{2}^{\infty} \frac{(-1)^{n}}{(\ln n)^{1 / n}}$
4. Let $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{b}_{\mathrm{n}}\right\}$ be positive sequences and assume that $\sum\left(a_{n}\right)^{2}$ and $\sum\left(b_{n}\right)^{2}$ each converge.

Prove that $\sum a_{n} b_{n}$ converges. (Hint: Use the Comparison Test.)
5. Let $\sum_{1}^{\infty} a_{n}$ be a convergent positive series. Prove that $\sum_{1}^{\infty} \sqrt{a_{n} a_{n+1}}$ converges also.

Hint: Use the geometric-mean arithmetic mean inequality.
6. Let S be a non-empty bounded set of real numbers and let $\beta=\sup \mathrm{S}$. Prove that $\inf \{\beta-x \mid x \in S\}=0$

