PART A: Definitions [10 points each] Be precise and careful.

1. State the Completeness property of the real numbers
2. Define cluster point of a sequence.
3. State the Nested Intervals theorem.
4. Define $\lim _{n \rightarrow \infty} a_{n}=L$.
5. State the Limit Location Theorem.

PART B: True or False [5 points each]
Determine if each of the following statements is True or False. If False, provide a precise counter-example; if True, give a very brief justification.
(a) If $\left\{a_{n}\right\}$ is bounded above, then the sequence $\left\{b_{n}\right\}$ defined by $b_{n}=-a_{n}$ is bounded below.
(b) If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are bounded below, then $\left\{a_{n} b_{n}\right\}$ is bounded below.
(c) If $\left\{a_{n}{ }^{2}\right\}$ converges to 9 and $\left\{a_{n}{ }^{3}\right\}$ converges to 27 , then $\left\{a_{n}\right\}$ converges to 3 .
(d) If $\left\{a_{n}+b_{n}\right\}$ converges and $\left\{a_{n}-b_{n}\right\}$ converges, then $\left\{a_{n}\right\}$ converges.
(e) If $\left\{a_{n} b_{n}\right\}$ converges and $\left\{b_{n}\right\}$ converges, then $\left\{a_{n}\right\}$ converges.
(f) If $\left\{\left|a_{n}\right|\right\}$ converges then $\left\{a_{n}\right\}$ converges.
(g) If $\left\{a_{n}\right\}$ is decreasing and $\left\{b_{n}\right\}$ is decreasing, then $\left\{a_{n} b_{n}\right\}$ is decreasing.
(h) Consider the sequence, $\left\{a_{n}\right\}$, defined recursively:

$$
\begin{aligned}
& a_{1}=2 \\
& a_{n+1}=\sqrt{a_{n}+4} \quad \text { for all } n \geq 1
\end{aligned}
$$

Then $\mathrm{a}_{\mathrm{n}} \leq 3$ for all $\mathrm{n} \geq 1$.
(i) Every sequence has at least one convergent subsequence.
(j) If $\left\{a_{n}+b_{n}\right\}$ converges and $\left\{a_{n}\right\}$ diverges then $\left\{b_{n}\right\}$ converges.
(k) Let $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ be a sequence satisfying $a_{n}>5$ for $n \gg 1$.

If $\left\{a_{n}\right\}$ converges to L, then $L>5$.
(l) Suppose that $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are sequences satisfying $0 \leq a_{n} \leq b_{n}$ for all $n \in \mathbf{N}$. Then, if $\left\{a_{n}\right\}$ diverges, it follows that $\left\{b_{n}\right\}$ diverges.
(m) Let $\left\{c_{n}\right\}$ be a subsequence of $\left\{a_{n}\right\}$ that is strictly increasing and let $\left\{b_{n}\right\}$ be a subsequence of $\left\{a_{n}\right\}$ that is strictly decreasing. Then $\left\{a_{n}\right\}$ is divergent.
(n) Suppose that the sequence $\left\{a_{n} / n\right\}$ converges. Then $\left\{a_{n}\right\}$ converges.

PART C: PROOFS [12 points each]

Instructions: Select any 4 of the following 6 problems. You may answer more than 4 to earn extra credit. 1. Prove that every convergent sequence is bounded.
2. State and prove the Sequence Location Theorem.
3. For $\mathrm{n} \geq 1$, define the sequence $\left\{\mathrm{c}_{\mathrm{n}}\right\}$ as follows:

$$
c_{n}=\int_{0}^{1} e^{-\frac{x^{3}}{n}} d x
$$

Determine $L=\lim c_{n}$. Prove that $\left\{c_{n}\right\}$ converges to L.
[Advice: Sketch the integrand for several values of n.]
4. State and prove the Product Theorem for Limits.

Advice: Use the Error-form Principle.
5. Determine $\lim \left(\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+\cdots+\frac{1}{2 n}\right)$ and prove it.

Hint: Use an area argument to estimate the sum of
$\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+\cdots+\frac{1}{2 n}$, followed by the Squeeze Theorem.
6. Assume that $a_{n}>0$ for all n, and that $\frac{a_{n+1}}{a_{n}} \rightarrow L$ where $L<1$.
(a) Explain why $\mathrm{L} \geq 0$.
(b) Prove that $\left\{a_{n}\right\}$ is decreasing for $n \gg 1$.
(c) Prove that $a_{n} \rightarrow 0$.

