MATH 351 OLD TEST 1 FEBRUARY 2018

PART A: Definitions [10 points each] Be precise and careful.

- 1. State the Completeness property of the real numbers
- 2. Define *cluster point* of a sequence.
- 3. State the *Nested Intervals theorem*.
- 4. Define $\lim_{n \to \infty} a_n = L$.

5. State the *Limit Location Theorem*.

PART B: True or False [5 points each]

Determine if each of the following statements is *True* or *False*. If False, provide a *precise counter-example*; if True, give a *very brief* justification.

(a) If $\{a_n\}$ is bounded above, then the sequence $\{b_n\}$ defined by $b_n = -a_n$ is bounded below.

(b) If $\{a_n\}$ and $\{b_n\}$ are bounded below, then $\{a_nb_n\}$ is bounded below.

- (c) If $\{a_n^2\}$ converges to 9 and $\{a_n^3\}$ converges to 27, then $\{a_n\}$ converges to 3.
- (d) If $\{a_n + b_n\}$ converges and $\{a_n b_n\}$ converges, then $\{a_n\}$ converges.
- (e) If $\{a_nb_n\}$ converges and $\{b_n\}$ converges, then $\{a_n\}$ converges.
- (f) If $\{|a_n|\}$ converges then $\{a_n\}$ converges.
- (g) If $\{a_n\}$ is decreasing and $\{b_n\}$ is decreasing, then $\{a_nb_n\}$ is decreasing.
- (h) Consider the sequence, $\{a_n\}$, defined recursively: $a_1 = 2$ $a_{n+1} = \sqrt{a_n + 4}$ for all $n \ge 1$.

Then $a_n \leq 3$ for all $n \geq 1$.

- (i) Every sequence has at least one convergent subsequence.
- (j) If $\{a_n + b_n\}$ converges and $\{a_n\}$ diverges then $\{b_n\}$ converges.
 - (k) Let $\{a_n\}$ be a sequence satisfying $a_n > 5$ for $n \gg 1$. If $\{a_n\}$ converges to L, then L > 5.

- (1) Suppose that $\{a_n\}$ and $\{b_n\}$ are sequences satisfying $0 \le a_n \le b_n$ for all $n \in \mathbb{N}$. Then, if $\{a_n\}$ diverges, it follows that $\{b_n\}$ diverges.
 - (m) Let {c_n} be a subsequence of {a_n} that is *strictly* increasing and let {b_n} be a subsequence of {a_n} that is *strictly* decreasing. Then {a_n} is divergent.
 - (n) Suppose that the sequence $\{a_n / n\}$ converges. Then $\{a_n\}$ converges.

PART C: PROOFS [12 points each]

Instructions: Select any 4 of the following 6 problems. You may answer more than 4 to earn extra credit.1. Prove that every convergent sequence is bounded.

- 2. State and prove the Sequence Location Theorem.
- 3. For $n \ge 1$, define the sequence $\{c_n\}$ as follows:

$$c_n = \int_0^1 e^{-\frac{x^3}{n}} dx$$

Determine $L = \lim c_n$. Prove that $\{c_n\}$ converges to L. [*Advice:* Sketch the integrand for several values of *n*.]

4. State and prove the *Product Theorem for Limits*. *Advice:* Use the Error-form Principle.

5. Determine $\lim_{n \to 1} \left(\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n} \right)$ and prove it. *Hint:* Use an area argument to estimate the sum of $\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n}$, followed by the Squeeze Theorem.

- 6. Assume that $a_n > 0$ for all n, and that $\frac{a_{n+1}}{a_n} \rightarrow L$ where L < 1.
 - (a) Explain why $L \ge 0$.
 - (b) Prove that $\{a_n\}$ is decreasing for n >> 1.
 - (c) Prove that $a_n \to 0$.