MATH 351 PRACTICE TEST III 14[™] NOVEMBER 2018

ABSTRUSE GOOSE

--- Paul R. Halmos

PART I Definitions and statements of theorems

PART II (Each of the following 14 assertions is false. Give an explicit counter-example to illustrate this.

- **1.** If $H: (0, 1) \rightarrow \mathbf{R}$ is continuous, then *H* is unbounded.
- 2. If G: $\mathbf{R} \to \mathbf{R}$ is discontinuous at every $x \in \mathbf{R}$, then G² is discontinuous at every $x \in \mathbf{R}$.
- **3.** There does not exist a function g: $\mathbf{R} \to \mathbf{R}$ that is discontinuous *only* at every $x \in \mathbf{N}$.
- 4. There does not exist a function f: $\mathbf{R} \to \mathbf{R}$ that is continuous *only* at every $x \in \mathbf{N}$.

- 5. If G: $[0, 1] \rightarrow \mathbf{R}$ is continuous then the set $\mathbf{S} = \{x \in [0, 1]: G(x) = 0\}$ is either uncountable or finite (possibly empty).
- 6. Let I = (0, 1). There does not exist a function g: $I \rightarrow \mathbf{R}$ such that g(I) is a compact interval of positive length.
- 7. If two functions, f: $\mathbf{R} \rightarrow \mathbf{R}$ and g: $\mathbf{R} \rightarrow \mathbf{R}$ satisfy the conditions that

$$\lim_{x \to 3} f(x) = 4, \ \lim_{x \to 4} g(x) = 5$$

and f is continuous at x = 3,

then
$$\lim_{x \to 3} g \circ f(x) = 5$$
.

- 8. If F: $[0, 1] \rightarrow \mathbf{R}$ is continuous and $\{x_n\} \subset [0, 1]$ is a sequence for which $F(x_n)$ converges then $\{x_n\}$ must converge.
- 9. If f: [a, b] \rightarrow **R** satisfies the Intermediate Value Property on [a, b], then *f* is continuous on [a, b].
- *10.* Let $F: \mathbb{R} \to \mathbb{R}$ be continuous and let $A, B \subseteq \mathbb{R}$. Then $F(A \cap B) = F(A) \cap F(B)$.
- 11. If S and T are sequentially compact subsets of R, then $A \setminus B = \{x \in S \mid x \notin T\}$ is sequentially compact.
- 12. Let G: $(0, 1) \rightarrow \mathbf{R}$ be a continuous function and let $\{a_n\} \subset (0, 1)$ be a Cauchy sequence. Then $\{G(a_n)\}$ is a Cauchy sequence.
- *13.* Let h: $[0,1] \rightarrow \mathbf{R}$ be a function that achieves a maximum value on the interval [0, 1]. Then the function $F(x) = (h(x))^2$ also achieves a maximum value on the interval [0, 1].
- 14. Let f: $\mathbf{R} \rightarrow \mathbf{R}$ and g: $\mathbf{R} \rightarrow \mathbf{R}$ each have a jump discontinuity at x = 5. Then f + g has a jump discontinuity at x = 5.

PART III

Instructions: Select any 3 of the following 4 problems. You may answer all 4 to obtain extra credit.

1. Let I = [a, b] be a compact interval. Prove that *I* is sequentially compact.

2. Using only the definition of limit, prove that
$$\lim_{x \to 0} \frac{5-x}{x^2+1} = 5.$$

- 3. Let G: (a, b) $\rightarrow \mathbf{R}$ be a uniformly continuous function and let $\{x_n\} \subset (a, b)$ be a Cauchy sequence. Prove that $\{G(x_n)\}$ is a Cauchy sequence.
- 4. Let $f(x) = \int_{\pi}^{4\pi} \frac{\sin xt}{t} dt$ be defined on **R** and let $x_0 \in \mathbf{R}$. Prove, using the definition of continuity, that *f* is continuous at $x = x_0$.

(*Hint:* You may use, without proof, the lemma for bounding $|\sin A - \sin B|$.)

PART IV

Instructions: Select any 4 of the following 5 problems. You may answer all five to obtain extra credit.

1. State and prove the Squeeze Theorem for functions.

- 2. Let $g(x) = \int_0^2 \frac{t^3}{1+x^2t^5+x^4t^9} dt$. Prove that $\lim_{x \to 0} g(x)$ exists and find its value. *Hint:* Use the squeeze theorem.
- **3.** Let *f* and *g* be uniformly continuous functions on **R**, and let *a* and *b* be constants. Prove that the linear combination, h = af + bg, is also uniformly continuous on **R**.
- 4. Let f: R → R be a function that satisfies the condition that, for any compact interval *I*, f(I) is a compact interval. Note that we are *not* assuming *f* to be continuous.
 - (a) Prove that, on any compact interval, f achieves a maximum value.
 - (b) Prove that on any compact interval, f satisfies the Intermediate Value Property.
- 5. Let G: $[0, 1] \rightarrow \mathbf{R}$ be continuous. We know from the Boundedness Theorem that $\alpha = \sup G([0, 1])$ exists. Let $\{a_n\}$ be a sequence of points in [0, 1] satisfying

 $G(a_n) > \alpha - 1/n \ \ \text{for all integers} \ n \geq 0.$

- (a) Must it follow that $\{a_n\}$ converge? Explain!
- (b) Suppose that $a_n \rightarrow p$. Prove that $G(p) = \alpha$.

We are usually convinced more easily by reasons we have found ourselves than by those which occurred to others.

- Blaise Pascal

This isn't right; this isn't even wrong.

- Wolfgang Pauli (1900-1958), upon reading a young physicist's paper

