MATH 351 PRACTICE TEST III $14^{\text {TI }}$ NOVEMBER 2018

ABSTRUSE GOOSE

Don't just read it; fight it!
--- Paul R. Halmos

PART I Definitions and statements of theorems

PART II (Each of the following 14 assertions is false. Give an explicit counter-example to illustrate this.

1. If $\mathrm{H}:(0,1) \rightarrow \mathbf{R}$ is continuous, then H is unbounded.
2. If $\mathrm{G}: \mathbf{R} \rightarrow \mathbf{R}$ is discontinuous at every $\mathrm{x} \in \mathbf{R}$, then G^{2} is discontinuous at every $\mathrm{x} \in \mathbf{R}$.
3. There does not exist a function $\mathrm{g}: \mathbf{R} \rightarrow \mathbf{R}$ that is discontinuous only at every $\mathrm{x} \in \mathbf{N}$.
4. There does not exist a function $f: \mathbf{R} \rightarrow \mathbf{R}$ that is continuous only at every $\mathrm{x} \in \mathbf{N}$.
5. If $\mathrm{G}:[0,1] \rightarrow \mathbf{R}$ is continuous then the set $\mathrm{S}=\{\mathrm{x} \in[0,1]: \mathrm{G}(\mathrm{x})=0\}$ is either uncountable or finite (possibly empty).
6. Let $\mathrm{I}=(0,1)$. There does not exist a function $\mathrm{g}: \mathrm{I} \rightarrow \mathbf{R}$ such that $\mathrm{g}(\mathrm{I})$ is a compact interval of positive length.
7. If two functions, f: $\mathbf{R} \rightarrow \mathbf{R}$ and $\mathrm{g}: \mathbf{R} \rightarrow \mathbf{R}$ satisfy the conditions that

$$
\lim _{x \rightarrow 3} f(x)=4, \lim _{x \rightarrow 4} g(x)=5
$$

and f is continuous at $\mathrm{x}=3$,

$$
\text { then } \lim _{x \rightarrow 3} g \circ f(x)=5 \text {. }
$$

8. If $\mathrm{F}:[0,1] \rightarrow \mathbf{R}$ is continuous and $\left\{\mathrm{x}_{\mathrm{n}}\right\} \subset[0,1]$ is a sequence for which $\mathrm{F}\left(\mathrm{x}_{\mathrm{n}}\right)$ converges then $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ must converge.
9. If $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbf{R}$ satisfies the Intermediate Value Property on $[\mathrm{a}, \mathrm{b}]$, then f is continuous on $[\mathrm{a}, \mathrm{b}]$.
10. Let $\mathrm{F}: \mathbf{R} \rightarrow \mathbf{R}$ be continuous and let $\mathrm{A}, \mathrm{B} \subseteq \mathbf{R}$. Then $\mathrm{F}(\mathrm{A} \cap \mathrm{B})=\mathrm{F}(\mathrm{A}) \cap \mathrm{F}(\mathrm{B})$.
11. If S and T are sequentially compact subsets of R , then $A \backslash B=\{\mathrm{x} \in \mathrm{S} \mid \mathrm{x} \notin \mathrm{T}\}$ is sequentially compact.
12. Let $\mathrm{G}:(0,1) \rightarrow \mathbf{R}$ be a continuous function and let $\left\{\mathrm{a}_{\mathrm{n}}\right\} \subset(0,1)$ be a Cauchy sequence. Then $\left\{\mathrm{G}\left(\mathrm{a}_{\mathrm{n}}\right)\right\}$ is a Cauchy sequence.
13. Let $\mathrm{h}:[0,1] \rightarrow \mathbf{R}$ be a function that achieves a maximum value on the interval $[0,1]$. Then the function $\mathrm{F}(\mathrm{x})=(\mathrm{h}(\mathrm{x}))^{2}$ also achieves a maximum value on the interval $[0,1]$.
14. Let $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$ and $\mathrm{g}: \mathbf{R} \rightarrow \mathbf{R}$ each have a jump discontinuity at $\mathrm{x}=5$. Then $\mathrm{f}+\mathrm{g}$ has a jump discontinuity at $\mathrm{x}=5$.

PART III

Instructions: Select any 3 of the following 4 problems. You may answer all 4 to obtain extra credit.

1. Let $\mathrm{I}=[\mathrm{a}, \mathrm{b}]$ be a compact interval. Prove that I is sequentially compact.
2. Using only the definition of limit, prove that $\lim _{x \rightarrow 0} \frac{5-x}{x^{2}+1}=5$.
3. Let G: $(\mathrm{a}, \mathrm{b}) \rightarrow \mathbf{R}$ be a uniformly continuous function and let $\left\{\mathrm{x}_{\mathrm{n}}\right\} \subset(\mathrm{a}, \mathrm{b})$ be a Cauchy sequence. Prove that $\left\{\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}$ is a Cauchy sequence.
4. Let $f(x)=\int_{\pi}^{4 \pi} \frac{\sin x t}{t} d t$ be defined on \mathbf{R} and let $\mathrm{x}_{0} \in \mathbf{R}$. Prove, using the definition of continuity, that f is continuous at $\mathrm{x}=\mathrm{x}_{0}$.
(Hint: You may use, without proof, the lemma for bounding $|\sin \mathrm{A}-\sin \mathrm{B}|$.)

PART IV

Instructions: Select any 4 of the following 5 problems. You may answer all five to obtain extra credit.

1. State and prove the Squeeze Theorem for functions.
2. Let $g(x)=\int_{0}^{2} \frac{t^{3}}{1+x^{2} t^{5}+x^{4} t^{9}} d t$. Prove that $\lim _{x \rightarrow 0} g(x)$ exists and find its value.

Hint: Use the squeeze theorem.
3. Let f and g be uniformly continuous functions on \mathbf{R}, and let a and b be constants. Prove that the linear combination, $h=a f+b g$, is also uniformly continuous on \mathbf{R}.
4. Let $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$ be a function that satisfies the condition that, for any compact interval I, $\mathrm{f}(\mathrm{I})$ is a compact interval. Note that we are not assuming f to be continuous.
(a) Prove that, on any compact interval, f achieves a maximum value.
(b) Prove that on any compact interval, f satisfies the Intermediate Value Property.
5. Let $\mathrm{G}:[0,1] \rightarrow \mathbf{R}$ be continuous. We know from the Boundedness Theorem that $\alpha=\sup G([0,1])$ exists. Let $\left\{a_{n}\right\}$ be a sequence of points in $[0,1]$ satisfying

$$
\mathrm{G}\left(\mathrm{a}_{\mathrm{n}}\right)>\alpha-1 / \mathrm{n} \text { for all integers } \mathrm{n} \geq 0 .
$$

(a) Must it follow that $\left\{a_{n}\right\}$ converge? Explain!
(b) Suppose that $\mathrm{a}_{\mathrm{n}} \rightarrow \mathrm{p}$. Prove that $\mathrm{G}(\mathrm{p})=\alpha$.

We are usually convinced more easily by reasons we have found ourselves than by those which occurred to others.

- Blaise Pascal

This isn't right; this isn't even wrong.

- Wolfgang Pauli (1900-1958), upon reading a young physicist's paper

