MATH 351 RECENT FINAL EXAMINATION

April 30 ${ }^{\text {th }}$, the $\mathbf{2 4 1}^{\text {st }}$ birthday of Johann Carl Friedrich Gauß

PART I [4 pts each]: Answer each of the following 18 questions.
(a) Give an example of two convergent series $\sum_{n} a_{n}$ and $\sum_{n} b_{n}$ such that $\sum_{n} a_{n} b_{n}$ diverges.
(b) Give an example of two divergent series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ for which $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges.
(c) Let d be the Uber metric on X, the set of lattice points in the plane, viz $\mathrm{X}=\{(\mathrm{p}, \mathrm{q}) \mid \mathrm{p}, \mathrm{q} \in \mathbf{Z}\}$. If Albertine wishes to travel from $\mathrm{A}=(1,1)$ to $\mathrm{B}=(3,5)$.
(i) What is the Uber distance from A to B ?
(ii) List the points that are within the open ball, $\mathrm{B}_{3}((0,0))$, centered at the origin of radius 3 .
(d) Give an example of two sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ such that $\left\{a_{n}\right\}$ diverges, $\left\{b_{n}\right\}$ diverges and $\mathrm{a}_{\mathrm{n}} \mathrm{b}_{\mathrm{n}} \rightarrow 2018$.
(e) Give an example of a sequence $\left\{a_{n}\right\}$ that has countably infinite many cluster points.
(f) Give an example of two functions, f: $\mathbf{R} \rightarrow \mathbf{R}$ and $\mathrm{g}: \mathbf{R} \rightarrow \mathbf{R}$ satisfying the conditions that

$$
\begin{aligned}
& \lim _{x \rightarrow 3} g(x)=9 \text { and } \lim _{x \rightarrow 9} f(x)=2018 \\
& \text { and } \lim _{x \rightarrow 3} f \circ g(x) \text { exists but does not equal } 2018
\end{aligned}
$$

(g) Prove that between any two distinct rational numbers, p and q, there exists an irrational number.
(h) Give an example of a convergent positive series $\sum \mathrm{a}_{\mathrm{n}}$ satisfying

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1
$$

(i) Give an example of a sequence that has a strictly increasing subsequence, a strictly decreasing subsequence, and a constant subsequence.
(j) Give an example of a sequence $\left\{I_{n}\right\}$ of nested bounded non-empty intervals such that

$$
\bigcap_{n=1}^{\infty} I_{n}=\emptyset
$$

(k) Let \mathbf{R} be endowed with the usual Euclidean metric. Give an example of a collection of closed subsets of \mathbf{R} whose union is not closed.
(l) Given a sequence $\left\{c_{n}\right\}$, define a new sequence $\left\{a_{n}\right\}$ as follows:

$$
a_{n}=\frac{c_{n-2}+c_{n-1}+c_{n}}{3} \text { for } n \geq 3
$$

(Note that each a_{n} is the moving average of the last 3 terms of the $\left\{\mathrm{c}_{\mathrm{n}}\right\}$ sequence.)
Find a divergent sequence $\left\{\mathrm{c}_{\mathrm{n}}\right\}$ for which $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ converges to 11 .
(m) Give an example of two bounded sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ for which

$$
\lim \inf a_{n} b_{n} \neq\left(\lim \inf a_{n}\right)\left(\lim \inf b_{n}\right)
$$

(n) Give an example of two non-empty bounded sets of real numbers, A and B, for which $\sup A B \neq(\sup A)(\sup B)$. (Here $A B$ is defined to be $\{a b \mid a \in A, b \in B\}$.)
(o) Let f: $\mathbf{R} \rightarrow \mathbf{R}$ be defined by:

$$
f(x)=\left\{\begin{array}{c}
x^{2}+1 \text { if } x \in Q \\
17-x^{2} \text { if } x \notin Q
\end{array}\right.
$$

For which values of x is f continuous?
(p) Give an example of a divergent positive sequence $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ satisfying

$$
\lim _{n \rightarrow \infty}\left(a_{n}\right)^{\frac{1}{n}}=1
$$

(q) Give an example of a convergent positive series, $\sum \mathrm{a}_{\mathrm{n}}$, such that $\sum \sqrt{\frac{a_{n}}{n}}$ diverges.
(r) Give an example of a convergent sequence $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ and a real number β such that $\forall \mathrm{n} \in \mathbf{Z}^{+} \quad \mathrm{a}_{\mathrm{n}}<\beta$ and $\lim \mathrm{a}_{\mathrm{n}} \geq \beta$.

PART II [12 pts each]: Answer any 9 of the following 11 questions. You may earn extra credit by answering more than 9 .

1. Odette proposes a new metric on the space of all real numbers, X. Albertine protests, and insists that this does not define a true metric.

Here is Odette's definition:
For any two points $\mathrm{P}=(\mathrm{a}, \mathrm{b})$ and $\mathrm{Q}=(\mathrm{c}, \mathrm{d})$, let
$D(P, Q)=D((a, b),(c, d))=(a-c)^{2}+(b-d)^{2}$
(a) [1 pt.] Prove that $\mathrm{D}(\mathrm{P}, \mathrm{Q})=0$ if $\mathrm{P}=\mathrm{Q}$, where $P, Q \in X$.
(b) [2 pts] Prove that $\mathrm{D}(\mathrm{P}, \mathrm{Q})>0$ of $P \neq Q$
(c) [2 pts] Prove that $\mathrm{D}(\mathrm{P}, \mathrm{Q})=\mathrm{D}(\mathrm{Q}, \mathrm{P})$
(d) [7 pts] Show, through a counterexample, that D does not satisfy the triangle inequality.
2. Let $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ be given by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$.
(a) [5 pts] State as a logical sentence: fis not uniformly continuous on \boldsymbol{R}.
(b) [7 pts] Using (a), prove that $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ is not uniformly continuous on \boldsymbol{R}.
(Hint: Start by letting $\epsilon=1$.)
3. Prove that the sequence $a_{n}=\sin n$ diverges.
4. Define $b_{n}=n^{1 / n}$. Using the error form principle (or directly), prove that $b_{n} \rightarrow 1$. (Do not use l'Hôpital's rule.)
5. [4 pts each] For each of the following numerical series, determine convergence or divergence. You must justify each answer!
(a) $\quad \sum_{1}^{\infty} \frac{(2)(4)(6) \ldots(2 n)}{(1)(3)(5) \ldots(2 n-1)}$
(b) $\sum_{1}^{\infty} \frac{\arctan n}{1+n^{2}}$
(c) $\quad \sum_{1}^{\infty} \frac{1+2^{n}+9^{n}}{5^{n}+8^{n}+n^{2018}}$
6. [9 pts.] Using only the definition of limit, prove that the following sequence converges:

$$
b_{n}=\frac{n^{4}+5 n^{2}+8}{n^{4}+n+2}
$$

(b) [3 pts.] Solve part (b) using the limit theorems for sequences.
7. Prove that the sum of two uniformly continuous functions, each defined on an interval I, is uniformly continuous.
8. Let $f(x)=\frac{x^{4}-16}{x^{3}+x^{2}-6 x}$. Find the three points of discontinuity of f. For each such point, classify the type of discontinuity.
9. Let K be a cluster point of a sequence $\left\{\mathrm{a}_{\mathrm{n}}\right\}$. Prove that K is the limit of some subsequence of $\left\{a_{n}\right\}$.
10. Let A and B be bounded non-empty subsets of \mathbf{R}. Prove that

$$
\sup (A+B) \leq \sup A+\sup B .
$$

Recall that $A+B=\{a+b \mid a \in A, b \in B\}$.
11. Define $\mathrm{g}: \mathbf{R} \rightarrow \mathbf{R}$ as follows: $g(x)=\left\{\begin{array}{l}x^{2} \sin (1 / x) \text { if } x \neq 0 \\ 0 \quad \text { if } x=0\end{array}\right.$
(a) [6 pts] Prove that g is continuous at $\mathrm{x}=0$.
(b) [6 pts] Is g uniformly continuous on \mathbf{R} ? Explain.

