MATH 351 ADDITIONAL PRACTICE FINAL EXAMINATION QUESTIONS (FROM PAST EXAMS) (REVISED)

PART I

(a) Give an example of two convergent series Σa_{n} and Σb_{n} such that $\Sigma a_{n} b_{n}$ diverges.
(b) Give an example of a continuous function, $\mathrm{g}:(0, \infty) \rightarrow \mathbf{R}$, such that g is uniformly continuous on $(1, \infty)$, but not uniformly continuous on $(0,1]$.
(c) Find a function $\mathrm{g}: \mathbf{R} \rightarrow \mathbf{R}$ such that g is continuous everywhere except for the set $\{1 / \mathrm{n}: \mathrm{n} \in \mathbf{N}\}$.
(d) Give an example of a sequence that has a strictly increasing subsequence, a strictly decreasing subsequence and a constant subsequence.
(e) Give an example of a sequence $\left\{\mathrm{t}_{\mathrm{n}}\right\}$ such that $\mathrm{t}_{\mathrm{n}} \rightarrow 0$ and $\sin \left(1 / \mathrm{t}_{\mathrm{n}}\right) \rightarrow 1 / 2$.
(f) Give an example of a sequence $\left\{I_{n}\right\}$ of nested closed intervals such that

$$
\bigcap_{n=1}^{\infty} I_{n}=\phi
$$

(g) Find a sequence $\left\{\mathrm{b}_{\mathrm{n}}\right\}$ such that, for all $p \in \mathbf{N}$, there exists a subsequence of $\left\{b_{n}\right\}$ that converges to p.
(h) Given a sequence $\left\{\mathrm{c}_{\mathrm{n}}\right\}$, define a new sequence $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ as follows:

$$
a_{n}=\frac{c_{1}+c_{2}+c_{3}+\ldots+c_{n}}{n}
$$

(Note that each a_{n} is the average of the first n terms of the $\left\{\mathrm{c}_{\mathrm{n}}\right\}$ sequence.) Find a divergent sequence $\left\{\mathrm{c}_{\mathrm{n}}\right\}$ for which $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ converges.
(i) Give an example of a function $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$ which is not continuous everywhere, yet which satisfies the property that: if I is any compact interval then $f(I)$ is a compact interval.
(j) Give an example of two series $\Sigma \mathrm{a}_{\mathrm{n}}$ and $\Sigma \mathrm{b}_{\mathrm{n}}$ for which $\Sigma\left(\mathrm{a}_{\mathrm{n}}+\mathrm{b}_{\mathrm{n}}\right)$ converges and yet the series $a_{1}+b_{1}+a_{2}+b_{2}+a_{3}+b_{3}+\ldots$ diverges.
(k) Give an example of two bounded sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ for which

$$
\lim \sup a_{n} b_{n} \neq\left(\lim \sup a_{n}\right)\left(\lim \sup b_{n}\right)
$$

(m) Give an example of two non-empty sets of real numbers, A and B, for which $\sup \mathrm{AB} \neq(\sup \mathrm{A})(\sup \mathrm{B})$. (Here $A B$ is defined to be $\{a b \mid a \in A, b \in B\}$.)
(n) Let f: $\mathbf{R} \rightarrow \mathbf{R}$ be defined by:

$$
f(x)=\left\{\begin{array}{l}
x^{2} \quad \text { if } x \in Q \\
x+2 \quad \text { if } x \notin Q
\end{array}\right.
$$

Where is f continuous?
(o) Give an example of a function that is bounded and continuous but not uniformly continuous.
(p) Give an example of two divergent sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ such that the sequence $\left\{a_{n} b_{n}\right\}$ is a Cauchy sequence.
(q) Give an example of a function $\mathrm{g}: \mathbf{R} \rightarrow \mathbf{R}$ that is continuous only at $\mathrm{x}=0$.
(r) Give an example of two continuous functions, $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$, each defined on ($-\infty, 5$), satisfying:

$$
\begin{gathered}
\mathrm{f}(\mathrm{x})<\mathrm{g}(\mathrm{x}) \text { for all } \mathrm{x}<5 \\
\text { and } \\
\lim _{x \rightarrow 5} f(x)=\lim _{x \rightarrow 5} g(x)
\end{gathered}
$$

(s) Give an example of a continuous function $\mathrm{f}:(0,1) \rightarrow \mathbf{R}$ and a Cauchy sequence $\left\{\mathrm{a}_{\mathrm{n}}\right\} \subset(0,1)$ such that $\left\{\mathrm{f}\left(\mathrm{a}_{\mathrm{n}}\right)\right\}$ does not converge.

PART II

1. (a) State the Comparison Test for numerical series.
(b) Determine convergence or divergence of the following series. Prove your result using the Comparison Test.

$$
\sum_{n=1}^{\infty} \frac{\left(n^{2}+1789\right)(n+2008)}{(n+1776)^{2}(n+1492)^{2}}
$$

2. (a) Let A be a non-empty subset of \mathbf{R}. Define uniform continuity for a function F: A $\rightarrow \mathbf{R}$.
(b) State what it means for a function $\mathrm{F}: \mathrm{A} \rightarrow \mathbf{R}$ to fail to be uniformly continuous on A by negating your definition above.
3. (a) State the Nested Interval Theorem.
(b) Using the Nested Interval Theorem, give Georg Cantor's original proof that \mathbf{R} is uncountable.
4. Prove, using only the definition of continuity, that $f(x)=\frac{x^{2}+4}{x+2}$ is continuous at $\mathrm{x}=2$.
5. Prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x=0
$$

6. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences satisfying $a_{n}+b_{n} \rightarrow A$ and $a_{n}-b_{n} \rightarrow B$. Prove that $\left\{a_{n} b_{n}\right\}$ converges, and that its limit is $\frac{1}{4}\left(A^{2}-B^{2}\right)$.
7. Prove that $\ln n!\sim n \ln n$.
8. State and prove the $n^{\text {th }}$ term test for divergence of a series.

$$
a_{n}=(-1)^{n} n \sin (1 / n)+\frac{n^{3}+1}{(n+1)^{3}} \text { and let } b_{n}=\frac{(-1)^{n} n^{2}+1}{(2 n+1)^{2}} .
$$

9. Find each of the following:
(A) $\lim \inf a_{n}$
(B) $\lim \inf b_{n}$
(C) $\lim \sup a_{n}$
(D) $\lim \sup b_{n}$
10. $\mathrm{f}: \mathrm{I} \rightarrow \mathbf{R}$ is said to be a Lipschitz function if there exists $\mathrm{L}>0$ such that for all $x, t \operatorname{in~} \mathrm{I},|\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{t})|<\mathrm{L}|\mathrm{x}-\mathrm{t}|$.
(A) Prove that if f is a Lipschitz function then f is uniformly continuous
(B) Give an example of a uniformly continuous function that is not Lipschitz.
11. The Dirichlet function $\mathrm{f}:(0,1) \rightarrow \mathbf{R}$ is defined by:

$$
f(x)=\left\{\begin{array}{l}
\frac{1}{q} \text { if } x=\frac{p}{q} \text { is in lowest terms with } p, q \in N \\
0 \text { if } x \text { is irrational }
\end{array}\right.
$$

Prove that, for all $\mathrm{a} \in(0,1)$,

$$
\lim _{x \rightarrow a} f(x)=0
$$

(Hint: Show that, for all $\mathrm{q} \in \mathbf{N}$, there exist only finitely many $\mathrm{x} \in(0,1)$ such that $\mathrm{f}(\mathrm{x}) \geq 1 / \mathrm{q}$.
12. Let n^{*} be the smallest positive integer n for which the inequality $(1+\mathrm{x})^{\mathrm{n}}>1+$ $n \mathrm{n}+\mathrm{nx}^{2}$ is true for all $\mathrm{x}>0$. Compute n^{*} and prove that the inequality is true for all integers $\mathrm{n} \geq n^{*}$.
13. Thomae's function (aka the Popcorn Function) f: $(0,1) \rightarrow \mathbf{R}$ is defined by:

$$
f(x)=\left\{\begin{array}{l}
\frac{1}{q} \text { if } x=\frac{p}{q} \text { is in lowest terms with } p, q \in N \\
0 \text { if } x \text { is irrational }
\end{array}\right.
$$

Prove that, for all $\mathrm{a} \in(0,1)$,

$$
\lim _{x \rightarrow a} f(x)=0
$$

(Hint: Show that, for all $\mathrm{q} \in \mathrm{N}$, there exist only finitely many $\mathrm{x} \in(0,1)$ such that $f(x) \geq 1 / q$.

PART III

1. Using mathematical induction prove the following:

$$
1(1!)+2(2!)+3(3!)+\ldots+n(n!)=(n+1)!-1 \text { for all } n \in \mathbf{N} .
$$

2. Let E be a non-empty subset of \mathbf{R} that is bounded above. Define

$$
U=\{\beta \in \mathbf{R}: \beta \text { is an upper bound of } E\} .
$$

Prove that $\sup E=\inf U$.
3. Let f be a continuous function defined on $[0,13]$. Prove that f is bounded.
4. Let f and g be uniformly continuous functions defined on \mathbf{R}. Prove that the composition function, $g \circ f$, is also uniformly continuous on \mathbf{R}.
5. Let $\mathrm{a}_{\mathrm{n}} \geq 0$ for all $\mathrm{n} \in \mathbf{N}$. If $\sum_{n=1}^{\infty} a_{n}$ converges, prove that $\sum_{n=1}^{\infty} \frac{\sqrt{a_{n}}}{n}$ converges.

Hint: Expand $\left(\sqrt{a_{n}}-\frac{1}{n}\right)^{2}$
6. Let $a_{n}=n^{1 / n}$. Prove that $a_{n} \rightarrow 1$.
7. Let $\left\{p_{n}\right\}$ be a Cauchy sequence that has a convergent subsequence. Prove that $\left\{p_{n}\right\}$ converges.

