
 

 

MATH 351            Solutions:   TEST 1            1 October 2018 
 

 Part A:   Definitions & Statements of Theorems 

 [10 points each]  Be precise and careful. 

1. Carefully state the Quotient Theorem for sequences. 

Let {𝑎𝑛} 𝑎𝑛𝑑 {𝑏𝑛} be sequences and assume that 𝑎𝑛 → 𝐿  𝑎𝑛𝑑 𝑏𝑛 → 𝑀.   

Then  
𝑎𝑛

𝑏𝑛
→

𝐿

𝑀
   provided that 𝐿 ≠ 0 𝑎𝑛𝑑  𝑏𝑛 ≠ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛. 

 

2. State the general triangle inequality. Aka (the extended triangle inequality). 

𝐿𝑒𝑡 𝑎1, 𝑎2, … 𝑎𝑛 ∈ 𝑅.   𝑇ℎ𝑒𝑛 |𝑎1 +  𝑎2 + ⋯ + 𝑎𝑛|  ≤ |𝑎1| + |𝑎2| + ⋯ + |𝑎𝑛| 

 

3. Let {𝑎𝑛} 𝑏𝑒 𝑎 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝐿 𝑏𝑒 𝑟𝑒𝑎𝑙, 𝑎𝑛𝑑 𝜀 > 0. 

Define 𝒂𝒏  𝑳𝜺
≈  𝒇𝒐𝒓 𝒏 ≫ 𝟏. 

 
|𝒂𝒏 − 𝑳| < 𝜺 𝒇𝒐𝒓 𝒏 ≫ 𝟏 
 
4.  State the Subsequence Theorem.  

 

Let {𝑎𝑛} 𝑏𝑒 𝑎 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝑤𝑖𝑡ℎ 𝑙𝑖𝑚𝑖𝑡 𝐿.   𝑇ℎ𝑒𝑛 𝑒𝑣𝑒𝑟𝑦 𝑠𝑢𝑏𝑠𝑒𝑤𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 {𝑎𝑛} 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠 𝑡𝑜 𝐿. 
 

 

5.  State the Nested Intervals Theorem. 
 

Let 𝐼𝑛 =  [𝑎𝑛 , 𝑏𝑛 ] be a sequence of nested interals, that is, for all n≥ 1 [𝑎𝑛+1 , 𝑏𝑛+1 ] ⊆ [𝑎𝑛 , 𝑏𝑛 ], and assume 

that 𝑏𝑛 − 𝑎𝑛 → 0.  

Then there exists a unique number L 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐿 ∈ ⋂ 𝐼𝑛 .
∞
𝑛=1   Moverover,  𝑎𝑛 → 𝐿 𝑎𝑛𝑑  𝑏𝑛 → 𝐿. 

 
 
6. Define 𝐥𝐢𝐦

𝒏→∞
𝒂𝒏 = ∞.   

 
𝑙𝑖𝑚
𝑛→∞

𝑎𝑛 = ∞  means that ∀𝑀  𝒂𝒏 > 𝑴  𝒇𝒐𝒓 𝒏 ≫ 𝟏. 

 
7. State the Sequence Location Theorem. 

 

𝐿𝑒𝑡 {𝑎𝑛} 𝑏𝑒 𝑎 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒.Then 

 lim 𝑎𝑛 < 𝑀 ⇒ 𝑎𝑛 < 𝑀 𝑓𝑜𝑟 𝑛 ≫ 1   

and lim 𝑎𝑛 > 𝑀 ⇒ 𝑎𝑛 > 𝑀 𝑓𝑜𝑟 𝑛 ≫ 1.   
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Part B:   True or False [6 points each]   

    
Determine if each of the following statements is True or False.  If False, provide a precise counter-example; if 

True, give a very brief justification. 

i If {an} and {bn} are sequences that are each bounded below, then so is the sequence {cn} defined by  

cn = an + bn 

TRUE:   Since {an} and {bn} are sequences that are each bounded below, 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑀 𝑎𝑛𝑑 𝐾 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

 𝑎𝑛 ≥ 𝑀 𝑎𝑛𝑑 𝑏𝑛 ≥ 𝐾   ∀𝑛 ≥ 1   

Hence    
𝑎𝑛 + 𝑏𝑛 ≥ 𝑀 + 𝐾    ∀𝑛 ≥ 1   

                   

ii Let {an} and {bn} be sequences such that {an + bn} converges.   Then the sequences {an} and {bn} each 

converge. 

FALSE:   

Let 𝑎𝑛 = 𝑛 𝑎𝑛𝑑 𝑏𝑛 = −𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛. Clearly {𝑎𝑛 + 𝑏𝑛} 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠 𝑦𝑒𝑡 {𝑎𝑛} fails to converge..   

 

iii Let {an} and {bn} be sequences, such that the sequence {an + bn} diverges. Then either {an } or {bn} (or 

possibly both) diverges. 

 

TRUE:    
The contrapositive is:   If both {an} and {bn} converge, then {an + bn} converges.  This follows from the 

limit law for sums. 

 

 

iv Let {an} and {bn} be sequences for which each of {2an + 3bn} and {4an – 5bn} converges.  Then the 

sequences {an} and {bn} each converge. 

 

TRUE:   Note that 𝑎𝑛 =
5(2𝑎𝑛+3𝑏𝑛)+3(4𝑎𝑛−5𝑏𝑛)

22
=

1

22
  (5(2𝑎𝑛 + 3𝑏𝑛) + 3(4𝑎𝑛 − 5𝑏𝑛)) 

So lim 𝑎𝑛 = 5 lim(2𝑎𝑛 + 3𝑏𝑛) + 3 lim (4𝑎𝑛 − 5𝑏𝑛). 

We can use a similar argument to show that {𝑏𝑛} converges. 

 

 

v If {an} converges to 0, then {|an|} converges to 0. 

 

TRUE:   Let 𝜀 > 0.   𝑇ℎ𝑒𝑛 |𝑎𝑛 − 0| < 𝜀 𝑓𝑜𝑟 𝑛 ≫ 1 𝑠𝑖𝑛𝑐𝑒  𝑎𝑛 → 0.    Now | |𝑎𝑛| − 0| = |𝑎𝑛 − 0| < 𝜀. 

Hence |𝑎𝑛| → 0. 
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vi   Suppose that {an} and {bn} are sequences satisfying 0 < an < bn for all n ∈ Z+.  Then, if {an} 

diverges, it follows that {bn} diverges.  

 

FALSE:   Let {an} be the sequence, 1, 2, 1, 2, 1, 2, … 

Let {bn} be the sequence  3, 3, 3, 3, … 

Then 0 < an < bn for all n , {an} diverges, yet {bn} converges. 

 

vii   Consider a sequence {an} for which the sequence {
𝑎𝑛

√𝑛
} converges.  Then {an} converges. 

FALSE:  Let 𝑎𝑛 = √𝑛.   Then 𝑎𝑛

√𝑛
= 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛.   

𝐻𝑒𝑛𝑐𝑒 {
𝑎𝑛

√𝑛
}  𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠, 𝑦𝑒𝑡{ 𝑎𝑛} 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑠. 

 

 

viii Let {an} be a convergent sequence satisfying the condition:  an < M for n>>1.  Then 

lim
𝑛→∞

𝑎𝑛 < M. 

FALSE:  Let M = 1 and 𝑎𝑛 = 1 −
1

𝑛
  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛. 𝑁𝑜𝑤 𝑎𝑛 < 𝑀 and yet 𝑙𝑖𝑚

𝑛→∞
𝑎𝑛 = 1 + 𝑀. 

 

ix Let {an} and {bn} be sequences such that {an + bn} converges to 0.  Then {an} and {bn} are bounded.    

FALSE:  Let 𝑎𝑛 = 𝑛 𝑎𝑛𝑑 𝑏𝑛 = −𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛. Clearly nether {𝑎𝑛} 𝑛𝑜𝑟 {𝑏𝑛} is bounded.   

 

x Let {an} be a sequence of positive real numbers for which lim
𝑛→∞

𝑎𝑛+1

𝑎𝑛
= 0.   Then {an} converges.  

TRUE:   Since lim
𝑛→∞

𝑎𝑛+1

𝑎𝑛
= 0,

𝑎𝑛+1

𝑎𝑛
<

1

2
 𝑓𝑜𝑟 𝑛 ≫ 1.   𝐼𝑛 𝑜𝑡ℎ𝑒𝑟 𝑤𝑜𝑟𝑑𝑠, 𝑎𝑛+1 <

1

2
𝑎𝑛 𝑓𝑜𝑟 𝑛 ≫ 1.    

From this, we can deduce that 𝑎𝑛 → 0. 

 

Part C:  Proofs [16 points each]      
 
Instructions:   Select any 3 of the following 5 problems.  You may answer a fourth question to earn extra 

credit. Do not answer more than 4. 

1.  Define the sequence {𝑎𝑛} by  𝑎𝑛 =
𝑛2−3𝑛−1

(𝑛+1)2
.  Guess the limit, L, of {𝑎𝑛} and prove, using only the 

definition of limit, that {𝑎𝑛} converges to L. 

Proof:   Since 
𝑛2−3𝑛−1

(𝑛+1)2
 ≈

𝑛2

𝑛2
= 1 𝑓𝑜𝑟 𝑛 ≫ 1, 𝑤𝑒 𝑔𝑢𝑒𝑠𝑠 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑙𝑖𝑚𝑖𝑡, 𝐿, 𝑖𝑠 1. 
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Next, 𝑙𝑒𝑡 𝜀 > 0.   Choose N* = 
7

𝜀
 

Then 𝑛 > 𝑁∗ ⇒  |
𝑛2−3𝑛−1

(𝑛+1)2
− 1| =  |

𝑛2−3𝑛−1−(𝑛+1)2

(𝑛+1)2
| = |

−5𝑛−2

(𝑛+1)2
| = 

 
5𝑛+2

(𝑛+1)2
<

5𝑛+2𝑛

𝑛2
=

7

𝑛
<

7

𝑁∗
< 𝜀  since 𝑁∗ ≥

7

𝜀
 .   

 
 

2.   Prove that if the sequence {𝑎𝑛} 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠, 𝑡ℎ𝑒𝑛 𝑖𝑡𝑠 𝑙𝑖𝑚𝑖𝑡 𝑖𝑠 𝑢𝑛𝑖𝑞𝑢𝑒. 
 

Proof:   Suppose, contrary to fact, that 𝑏𝑛 → 𝐿1    𝑎𝑛𝑑  𝑏𝑛 → 𝐿2    𝑤ℎ𝑒𝑟𝑒 𝐿1  ≠ 𝐿2     

Now choose 𝜀 =
1

2
  |𝐿1  − 𝐿2  | 

So for n>>1,  |𝐿1  − 𝑎𝑛 | < 𝜀 𝑎𝑛𝑑 |𝐿2  − 𝑎𝑛  | < 𝜀. 

Using the triangle inequality,  |𝐿1  − 𝐿2  | < |(𝐿1  − 𝑎𝑛  ) + (𝑎𝑛  − 𝐿2  ) 
| <  |𝐿1  − 𝑎𝑛  | + |𝐿2  − 𝑎𝑛  | <  

2𝜀 < 2 (
1

2
)   |𝐿1  − 𝐿2  | = |𝐿1  − 𝐿2  | 

But this means that |𝐿1  − 𝐿2  | > 2𝜀 = 2 (
1

2
  |𝐿1  − 𝐿2  |) = |𝐿1  − 𝐿2  |  

𝑤ℎ𝑖𝑐ℎ 𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑠 𝑜𝑢𝑟 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛.  𝐻𝑒𝑛𝑐𝑒 𝐿1 = 𝐿2 . 

 

3.   Prove that if a > 1, 𝑡ℎ𝑒𝑛 𝑎𝑛 → ∞. 
 

Proof:   Since a > 1, a = 1 + h where h > 0. 

Using Bernoulli’s inequality, we have   an > 1 + nh > nh. 

So, given any M > 0, choose N* = 
𝑀

ℎ
.   

Now, when n > N* =  
𝑀

ℎ
, it follows that 𝑎𝑛 >  𝑎𝑁∗

 > N* h  = M. 

Hence, by definition, 𝑎𝑛 → ∞. 

 

 

 

 

4.   State and prove the Limit Location Theorem. 

Statement of Theorem:  

𝐿𝑒𝑡 {𝑎𝑛} 𝑏𝑒 𝑎 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒.  Then 

𝑎𝑛 ≤ 𝑀 𝑓𝑜𝑟 𝑛 ≫ 1 ⇒  𝑙𝑖𝑚 𝑎𝑛 ≤ 𝑀    

𝑎𝑛 ≥ 𝑀 𝑓𝑜𝑟 𝑛 ≫ 1 ⇒  𝑙𝑖𝑚 𝑎𝑛 ≥ 𝑀.   

 

Proof:   We are given that 𝑎𝑛 ≤ 𝑀 𝑓𝑜𝑟 𝑛 ≫ 1 and thatthere exists an L for which  𝑎𝑛 → 𝐿. 

Hence for all 𝜀 > 0, 𝑎𝑛  𝐿 𝑓𝑜𝑟 𝑛 ≫ 1.  𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑙𝑦, 𝐿 − 𝜀 <   𝑎𝑛 < 𝐿 +𝜀
≈ 𝜀. 

Since we are given that 𝑎𝑛 ≤ 𝑀 𝑓𝑜𝑟 𝑛 ≫ 1, 𝑖𝑡 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑡ℎ𝑎𝑡  𝐿 − 𝜀 <   𝑎𝑛 ≤ 𝑀 𝑓𝑜𝑟 𝑛 ≫ 1.  
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Now since 𝜀 𝑖𝑠 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦, 𝑖𝑡 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑡ℎ𝑎𝑡 𝐿 ≤ 𝑀. 
 

5.   For n ≥ 1, define the sequence {bn} as follows: 

𝑏𝑛 = ∫ 𝑐𝑜𝑠𝑛1

0
(

𝜋𝑥

2
)   𝑑𝑥. 

Prove that 𝑏𝑛 → 0. 
 

Proof:   𝐿𝑒𝑡 𝜀 > 0 𝑏𝑒 𝑔𝑖𝑣𝑒𝑛.   

Choose N* such that 𝑐𝑜𝑠𝑁∗
(

𝜋𝜀

2
) < 𝜀.  𝑇ℎ𝑖𝑠 𝑐𝑎𝑛 𝑏𝑒 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑 𝑏𝑒𝑐𝑎𝑢𝑠𝑒  

0 < cos (
𝜋𝜀

2
) < 1 

Then 𝑛 > 𝑁∗ ⇒ 𝑏𝑛 = ∫ 𝑐𝑜𝑠𝑛1

0
(

𝜋𝑥

2
) 𝑑𝑥 = ∫ 𝑐𝑜𝑠𝑛𝜀

0
(

𝜋𝑥

2
) 𝑑𝑥 + ∫ 𝑐𝑜𝑠𝑛1

 𝜀
(

𝜋𝑥

2
) 𝑑𝑥 <  

∫ 𝑐𝑜𝑠𝑁∗𝜀

0
(

𝜋𝑥

2
) 𝑑𝑥 + ∫ 𝑐𝑜𝑠𝑁∗1

 𝜀
(

𝜋𝑥

2
) 𝑑𝑥 < (1) 𝜀 + 𝜀(1 − 𝜀) < 2𝜀 . 

(Here we have used the fact that 𝑐𝑜𝑠𝑛 (
𝜋𝑥

2
)  is decreasing on [0, 1].) 

Hence by the K- 𝜀 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑙𝑒, 𝑏𝑛 → 0. 
 


