MATH 351 SOLUTIONS: TEST $1 \quad 1$ OCTOBER 2018

## PART A: Definitions \& Statements of Theorems

[10 points each] Be precise and careful.

1. Carefully state the Quotient Theorem for sequences.

Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences and assume that $a_{n} \rightarrow L$ and $b_{n} \rightarrow M$.
Then $\frac{a_{n}}{b_{n}} \rightarrow \frac{L}{M}$ provided that $L \neq 0$ and $b_{n} \neq 0$ for all $n$.
2. State the general triangle inequality. Aka (the extended triangle inequality).

Let $a_{1}, a_{2}, \ldots a_{n} \in R$. Then $\left|a_{1}+a_{2}+\cdots+a_{n}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{n}\right|$
3. Let $\left\{a_{n}\right\}$ be a sequence, $L$ be real, and $\varepsilon>0$.

Define $\boldsymbol{a}_{\boldsymbol{n}} \approx \boldsymbol{\approx} \boldsymbol{L}$ for $\boldsymbol{n} \gg 1$.
$\left|a_{n}-L\right|<\varepsilon$ for $n \gg 1$

## 4. State the Subsequence Theorem.

Let $\left\{a_{n}\right\}$ be a convergent sequence, with limit $L$. Then every subsewuence of $\left\{a_{n}\right\}$ converges to $L$.

## 5. State the Nested Intervals Theorem.

Let $I_{n}=\left[a_{n}, b_{n}\right]$ be a sequence of nested interals, that is, for all $n \geq 1\left[a_{n+1}, b_{n+1}\right] \subseteq\left[a_{n}, b_{n}\right]$, and assume that $b_{n}-a_{n} \rightarrow 0$.
Then there exists a unique number $L$ such that $L \in \cap_{n=1}^{\infty} I_{n}$. Moverover, $a_{n} \rightarrow L$ and $b_{n} \rightarrow L$.
6. Define $\lim _{n \rightarrow \infty} a_{n}=\infty$.
$\lim _{n \rightarrow \infty} a_{n}=\infty$ means that $\forall M \boldsymbol{a}_{\boldsymbol{n}}>\boldsymbol{M}$ for $\boldsymbol{n} \gg \mathbf{1}$.
7. State the Sequence Location Theorem.

Let $\left\{a_{n}\right\}$ be a conver gent sequence.Then
$\lim a_{n}<M \Rightarrow a_{n}<M$ for $n \gg 1$
and $\lim a_{n}>M \Rightarrow a_{n}>M$ for $n \gg 1$.

## PART B: True or False [6 points each]

Determine if each of the following statements is True or False. If False, provide a precise counter-example; if True, give a very brief justification.
i If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are sequences that are each bounded below, then so is the sequence $\left\{c_{n}\right\}$ defined by $c_{n}=a_{n}+b_{n}$

TRUE: Since $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are sequences that are each bounded below, there exist $M$ and $K$ such that

$$
a_{n} \geq M \text { and } b_{n} \geq K \quad \forall n \geq 1
$$

Hence

$$
a_{n}+b_{n} \geq M+K \quad \forall n \geq 1
$$

ii Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences such that $\left\{a_{n}+b_{n}\right\}$ converges. Then the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ each converge.
FALSE:
Let $a_{n}=n$ and $b_{n}=-n$ for all $n$. Clearly $\left\{a_{n}+b_{n}\right\}$ converges yet $\left\{a_{n}\right\}$ fails to converge..
iii Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences, such that the sequence $\left\{a_{n}+b_{n}\right\}$ diverges. Then either $\left\{a_{n}\right\}$ or $\left\{b_{n}\right\}$ (or possibly both) diverges.

TRUE:
The contrapositive is: If both $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ converge, then $\left\{a_{n}+b_{n}\right\}$ converges. This follows from the limit law for sums.
iv Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences for which each of $\left\{2 a_{n}+3 b_{n}\right\}$ and $\left\{4 a_{n}-5 b_{n}\right\}$ converges. Then the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ each converge.

TRUE: Note that $a_{n}=\frac{5\left(2 a_{n}+3 b_{n}\right)+3\left(4 a_{n}-5 b_{n}\right)}{22}=\frac{1}{22}\left(5\left(2 a_{n}+3 b_{n}\right)+3\left(4 a_{n}-5 b_{n}\right)\right)$
So $\lim a_{n}=5 \lim \left(2 a_{n}+3 b_{n}\right)+3 \lim \left(4 a_{n}-5 b_{n}\right)$.
We can use a similar argument to show that $\left\{b_{n}\right\}$ converges.
$\mathbf{v}$ If $\left\{a_{n}\right\}$ converges to 0 , then $\left\{\left|a_{n}\right|\right\}$ converges to 0 .

TRUE: Let $\varepsilon>0$. Then $\left|a_{n}-0\right|<\varepsilon$ for $n \gg 1$ since $a_{n} \rightarrow 0$. Now $\left|\left|a_{n}\right|-0\right|=\left|a_{n}-0\right|<\varepsilon$.
Hence $\left|a_{n}\right| \rightarrow 0$.
vi Suppose that $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are sequences satisfying $0<a_{n}<b_{n}$ for all $n \in \mathbf{Z}^{+}$. Then, if $\left\{a_{n}\right\}$ diverges, it follows that $\left\{b_{n}\right\}$ diverges.

FALSE: Let $\left\{a_{n}\right\}$ be the sequence, $1,2,1,2,1,2, \ldots$
Let $\left\{b_{n}\right\}$ be the sequence 3, 3, 3, 3, ...
Then $0<a_{n}<b_{n}$ for all $n,\left\{a_{n}\right\}$ diverges, yet $\left\{b_{n}\right\}$ converges.
vii Consider a sequence $\left\{a_{n}\right\}$ for which the sequence $\left\{\frac{a_{n}}{\sqrt{n}}\right\}$ converges. Then $\left\{a_{n}\right\}$ converges.
FALSE: Let $a_{n}=\sqrt{n}$. Then $\frac{a_{n}}{\sqrt{n}}=1$ for all $n$.
Hence $\left\{\frac{a_{n}}{\sqrt{n}}\right\}$ converges, yet $\left\{a_{n}\right\}$ diverges.
viii Let $\left\{a_{n}\right\}$ be a convergent sequence satisfying the condition: $a_{n}<M$ for $n \gg 1$. Then

$$
\lim _{n \rightarrow \infty} a_{n}<M
$$

FALSE: Let $M=1$ and $a_{n}=1-\frac{1}{n}$ for all $n$. Now $a_{n}<M$ and yet $\lim _{n \rightarrow \infty} a_{n}=1+M$.
ix Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences such that $\left\{a_{n}+b_{n}\right\}$ converges to 0 . Then $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are bounded.
FALSE: Let $a_{n}=n$ and $b_{n}=-n$ for all $n$. Clearly nether $\left\{a_{n}\right\}$ nor $\left\{b_{n}\right\}$ is bounded.
$\mathbf{x} \quad$ Let $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ be a sequence of positive real numbers for which $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=0$. Then $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ converges.
TRUE: Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=0, \frac{a_{n+1}}{a_{n}}<\frac{1}{2}$ for $n \gg 1$. In other words, $a_{n+1}<\frac{1}{2} a_{n}$ for $n \gg 1$.
From this, we can deduce that $a_{n} \rightarrow 0$.

## PART C: PROOFS [16 points each]

Instructions: Select any 3 of the following 5 problems. You may answer a fourth question to earn extra credit. Do not answer more than 4.

1. Define the sequence $\left\{a_{n}\right\}$ by $a_{n}=\frac{n^{2}-3 n-1}{(n+1)^{2}}$. Guess the limit, $L$, of $\left\{a_{n}\right\}$ and prove, using only the definition of limit, that $\left\{a_{n}\right\}$ converges to $L$.

Proof: Since $\frac{n^{2}-3 n-1}{(n+1)^{2}} \approx \frac{n^{2}}{n^{2}}=1$ for $n \gg 1$, we guess that the limit, $L$, is 1 .

Next, let $\varepsilon>0$. Choose $N^{*}=\frac{7}{\varepsilon}$
Then $n>N^{*} \Rightarrow\left|\frac{n^{2}-3 n-1}{(n+1)^{2}}-1\right|=\left|\frac{n^{2}-3 n-1-(n+1)^{2}}{(n+1)^{2}}\right|=\left|\frac{-5 n-2}{(n+1)^{2}}\right|=$
$\frac{5 n+2}{(n+1)^{2}}<\frac{5 n+2 n}{n^{2}}=\frac{7}{n}<\frac{7}{N^{*}}<\varepsilon$ since $N^{*} \geq \frac{7}{\varepsilon}$.
2. Prove that if the sequence $\left\{a_{n}\right\}$ converges, then its limit is unique.

Proof: Suppose, contrary to fact, that $b_{n} \rightarrow L_{1}$ and $b_{n} \rightarrow L_{2}$ where $L_{1} \neq L_{2}$
Now choose $\varepsilon=\frac{1}{2}\left|L_{1}-L_{2}\right|$
So for $\mathrm{n} \gg 1,\left|L_{1}-a_{n}\right|<\varepsilon$ and $\left|L_{2}-a_{n}\right|<\varepsilon$.

Using the triangle inequality, $\left|L_{1}-L_{2}\right|<\left|\left(L_{1}-a_{n}\right)+\left(a_{n}-L_{2}\right)\right|<\left|L_{1}-a_{n}\right|+\left|L_{2}-a_{n}\right|<$ $2 \varepsilon<2\left(\frac{1}{2}\right)\left|L_{1}-L_{2}\right|=\left|L_{1}-L_{2}\right|$

But this means that $\left|L_{1}-L_{2}\right|>2 \varepsilon=2\left(\frac{1}{2}\left|L_{1}-L_{2}\right|\right)=\left|L_{1}-L_{2}\right|$
which contradicts our initial assumption. Hence $L_{1}=L_{2}$.
3. Prove that if a $>1$, then $a^{n} \rightarrow \infty$.

Proof: Since $a>1, a=1+h$ where $h>0$.
Using Bernoulli's inequality, we have $a^{n}>1+n h>n h$.
So, given any $M>0$, choose $N^{*}=\frac{M}{h}$.
Now, when $n>N^{*}=\frac{M}{h}$, it follows that $a^{n}>a^{N^{*}}>N^{*} h=M$.
Hence, by definition, $a^{n} \rightarrow \infty$.

## 4. State and prove the Limit Location Theorem.

## Statement of Theorem:

Let $\left\{a_{n}\right\}$ be a convergent sequence. Then
$a_{n} \leq M$ for $n \gg 1 \Rightarrow \lim a_{n} \leq M$
$a_{n} \geq M$ for $n \gg 1 \Rightarrow \lim a_{n} \geq M$.

Proof: We are given that $a_{n} \leq M$ for $n \gg 1$ and thatthere exists an $L$ for which $a_{n} \rightarrow L$.
Hence for all $\varepsilon>0, a_{n} \approx \tilde{\tilde{\varepsilon}} L$ for $n \gg 1$. Equivalently, $L-\varepsilon<a_{n}<L+\varepsilon$.
Since we are given that $a_{n} \leq M$ for $n \gg 1$, it follows that $L-\varepsilon<a_{n} \leq M$ for $n \gg 1$.

Now since $\varepsilon$ is arbitrary, it follows that $L \leq M$.
5. For $\mathrm{n} \geq 1$, define the sequence $\left\{\mathrm{b}_{\mathrm{n}}\right\}$ as follows:

$$
b_{n}=\int_{0}^{1} \cos ^{n}\left(\frac{\pi x}{2}\right) d x
$$

Prove that $b_{n} \rightarrow 0$.
Proof: Let $\varepsilon>0$ be given.
Choose $N^{*}$ such that $\cos ^{N^{*}}\left(\frac{\pi \varepsilon}{2}\right)<\varepsilon$. This can be achieved because $0<\cos \left(\frac{\pi \varepsilon}{2}\right)<1$
Then $n>N^{*} \Rightarrow b_{n}=\int_{0}^{1} \cos ^{n}\left(\frac{\pi x}{2}\right) d x=\int_{0}^{\varepsilon} \cos ^{n}\left(\frac{\pi x}{2}\right) d x+\int_{\varepsilon}^{1} \cos ^{n}\left(\frac{\pi x}{2}\right) d x<$
$\int_{0}^{\varepsilon} \cos ^{N^{*}}\left(\frac{\pi x}{2}\right) d x+\int_{\varepsilon}^{1} \cos ^{N^{*}}\left(\frac{\pi x}{2}\right) d x<(1) \varepsilon+\varepsilon(1-\varepsilon)<2 \varepsilon$.
(Here we have used the fact that $\cos ^{n}\left(\frac{\pi x}{2}\right)$ is decreasing on [0, 1].)
Hence by the $K-\varepsilon$ principle, $b_{n} \rightarrow 0$.

