MATH 351 SOLUTIONS: TEST 1 1 OCTOBER 2018

PART A: Definitions & Statements of Theorems

[10 points each] Be precise and careful.

1. Carefully state the **Quotient Theorem** for sequences.

Let $\{a_n\}$ and $\{b_n\}$ be sequences and assume that $a_n \to L$ and $b_n \to M$. Then $\frac{a_n}{b_n} \to \frac{L}{M}$ provided that $L \neq 0$ and $b_n \neq 0$ for all n.

2. State the general triangle inequality. Aka (the extended triangle inequality).

Let $a_1, a_2, \dots a_n \in R$. Then $|a_1 + a_2 + \dots + a_n| \le |a_1| + |a_2| + \dots + |a_n|$

3. Let $\{a_n\}$ be a sequence, *L* be real, and $\varepsilon > 0$. Define $a_n \stackrel{\approx}{_{\varepsilon}} L$ for $n \gg 1$.

 $|a_n - L| < \varepsilon for n \gg 1$

4. State the *Subsequence Theorem*.

Let $\{a_n\}$ be a convergent sequence, with limit L. Then every subsewuence of $\{a_n\}$ converges to L.

5. State the *Nested Intervals Theorem*.

Let $I_n = [a_n, b_n]$ be a sequence of nested interals, that is, for all $n \ge 1$ $[a_{n+1}, b_{n+1}] \subseteq [a_n, b_n]$, and assume that $b_n - a_n \rightarrow 0$.

Then there exists a unique number L such that $L \in \bigcap_{n=1}^{\infty} I_n$. Moverover, $a_n \to L$ and $b_n \to L$.

6. Define $\lim_{n \to \infty} a_n = \infty$.

 $\lim_{n\to\infty} a_n = \infty \text{ means that } \forall M \ a_n > M \ for \ n \gg 1.$

7. State the Sequence Location Theorem.

Let $\{a_n\}$ be a convergent sequence. Then $\lim a_n < M \Rightarrow a_n < M \text{ for } n \gg 1$ and $\lim a_n > M \Rightarrow a_n > M \text{ for } n \gg 1$.

PART B: *True or False* [6 points each]

Determine if each of the following statements is *True* or *False*. If False, provide a *precise counter-example*; if True, give a *very brief* justification.

i If $\{a_n\}$ and $\{b_n\}$ are sequences that are each bounded below, then so is the sequence $\{c_n\}$ defined by $c_n = a_n + b_n$

TRUE: Since $\{a_n\}$ and $\{b_n\}$ are sequences that are each bounded below, there exist M and K such that

 $a_n \ge M \text{ and } b_n \ge K \quad \forall n \ge 1$

Hence

```
a_n + b_n \ge M + K \quad \forall n \ge 1
```

ii Let $\{a_n\}$ and $\{b_n\}$ be sequences such that $\{a_n + b_n\}$ converges. Then the sequences $\{a_n\}$ and $\{b_n\}$ each converge.

FALSE:

Let $a_n = n$ and $b_n = -n$ for all n. Clearly $\{a_n + b_n\}$ converges yet $\{a_n\}$ fails to converge.

iii Let $\{a_n\}$ and $\{b_n\}$ be sequences, such that the sequence $\{a_n + b_n\}$ diverges. Then either $\{a_n\}$ or $\{b_n\}$ (or possibly both) diverges.

TRUE:

The contrapositive is: If both $\{a_n\}$ and $\{b_n\}$ converge, then $\{a_n + b_n\}$ converges. This follows from the limit law for sums.

iv Let $\{a_n\}$ and $\{b_n\}$ be sequences for which each of $\{2a_n + 3b_n\}$ and $\{4a_n - 5b_n\}$ converges. Then the sequences $\{a_n\}$ and $\{b_n\}$ each converge.

TRUE: Note that $a_n = \frac{5(2a_n + 3b_n) + 3(4a_n - 5b_n)}{22} = \frac{1}{22} (5(2a_n + 3b_n) + 3(4a_n - 5b_n))$

So $\lim a_n = 5 \lim (2a_n + 3b_n) + 3 \lim (4a_n - 5b_n)$.

We can use a similar argument to show that $\{b_n\}$ converges.

v If $\{a_n\}$ converges to 0, then $\{|a_n|\}$ converges to 0.

TRUE: Let $\varepsilon > 0$. Then $|a_n - 0| < \varepsilon$ for $n \gg 1$ since $a_n \to 0$. Now $|a_n| - 0| = |a_n - 0| < \varepsilon$. Hence $|a_n| \to 0$.

- vi Suppose that $\{a_n\}$ and $\{b_n\}$ are sequences satisfying $0 < a_n < b_n$ for all $n \in \mathbb{Z}^+$. Then, if $\{a_n\}$ diverges, it follows that $\{b_n\}$ diverges.
- **FALSE:** Let $\{a_n\}$ be the sequence, 1, 2, 1, 2, 1, 2, ... Let $\{b_n\}$ be the sequence 3, 3, 3, 3, ... Then $0 < a_n < b_n$ for all n, $\{a_n\}$ diverges, yet $\{b_n\}$ converges.
- vii Consider a sequence $\{a_n\}$ for which the sequence $\{\frac{a_n}{\sqrt{n}}\}$ converges. Then $\{a_n\}$ converges. FALSE: Let $a_n = \sqrt{n}$. Then $\frac{a_n}{\sqrt{n}} = 1$ for all n.

Hence $\left\{\frac{a_n}{\sqrt{n}}\right\}$ converges, yet $\{a_n\}$ diverges.

viii Let $\{a_n\}$ be a convergent sequence satisfying the condition: $a_n < M$ for n >> 1. Then $\lim_{n \to \infty} a_n < M.$

FALSE: Let M = 1 and $a_n = 1 - \frac{1}{n}$ for all n. Now $a_n < M$ and yet $\lim_{n \to \infty} a_n = 1 + M$.

ix Let $\{a_n\}$ and $\{b_n\}$ be sequences such that $\{a_n + b_n\}$ converges to 0. Then $\{a_n\}$ and $\{b_n\}$ are bounded. **FALSE:** Let $a_n = n$ and $b_n = -n$ for all n. Clearly nether $\{a_n\}$ nor $\{b_n\}$ is bounded.

- **x** Let $\{a_n\}$ be a sequence of positive real numbers for which $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 0$. Then $\{a_n\}$ converges.
- **TRUE:** Since $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 0$, $\frac{a_{n+1}}{a_n} < \frac{1}{2}$ for $n \gg 1$. In other words, $a_{n+1} < \frac{1}{2}a_n$ for $n \gg 1$.

From this, we can deduce that $a_n \to 0$.

PART C: PROOFS [16 points each]

Instructions: Select any 3 of the following 5 problems. You may answer a fourth question to earn extra credit. Do not answer more than 4.

1. Define the sequence $\{a_n\}$ by $a_n = \frac{n^2 - 3n - 1}{(n+1)^2}$. Guess the limit, *L*, of $\{a_n\}$ and prove, *using only the*

definition of limit, that $\{a_n\}$ converges to *L*.

Proof: Since
$$\frac{n^2 - 3n - 1}{(n+1)^2} \approx \frac{n^2}{n^2} = 1$$
 for $n \gg 1$, we guess that the limit, L, is 1

Next, let
$$\varepsilon > 0$$
. Choose $N^* = \frac{7}{\varepsilon}$
Then $n > N^* \Rightarrow \left| \frac{n^2 - 3n - 1}{(n+1)^2} - 1 \right| = \left| \frac{n^2 - 3n - 1 - (n+1)^2}{(n+1)^2} \right| = \left| \frac{-5n - 2}{(n+1)^2} \right| = \frac{5n + 2}{(n+1)^2} < \frac{5n + 2n}{n^2} = \frac{7}{n} < \frac{7}{N^*} < \varepsilon \text{ since } N^* \ge \frac{7}{\varepsilon}.$

2. Prove that if the sequence $\{a_n\}$ converges, then its limit is unique.

Proof: Suppose, contrary to fact, that $b_n \to L_1$ and $b_n \to L_2$ where $L_1 \neq L_2$ Now choose $\varepsilon = \frac{1}{2} |L_1 - L_2|$ So for n>>1, $|L_1 - a_n| < \varepsilon$ and $|L_2 - a_n| < \varepsilon$.

Using the triangle inequality, $|L_1 - L_2| < |(L_1 - a_n) + (a_n - L_2)| < |L_1 - a_n| + |L_2 - a_n| < 2\varepsilon < 2\left(\frac{1}{2}\right) |L_1 - L_2| = |L_1 - L_2|$ But this means that $|L_1 - L_2| = |L_1 - L_2|$

But this means that $|L_1 - L_2| > 2\varepsilon = 2\left(\frac{1}{2} |L_1 - L_2|\right) = |L_1 - L_2|$ which contradicts our initial assumption. Hence $L_1 = L_2$.

3. Prove that if a > 1, then $a^n \to \infty$.

Proof: Since a > 1, a = 1 + h where h > 0. Using Bernoulli's inequality, we have $a^n > 1 + nh > nh$. So, given any M > 0, choose $N^* = \frac{M}{h}$. Now, when $n > N^* = \frac{M}{h}$, it follows that $a^n > a^{N^*} > N^*h = M$. Hence, by definition, $a^n \to \infty$.

4. State and prove the *Limit Location Theorem*.

Statement of Theorem: Let $\{a_n\}$ be a convergent sequence. Then $a_n \leq M$ for $n \gg 1 \Rightarrow \lim a_n \leq M$ $a_n \geq M$ for $n \gg 1 \Rightarrow \lim a_n \geq M$.

Proof: We are given that $a_n \leq M$ for $n \gg 1$ and that there exists an L for which $a_n \rightarrow L$. Hence for all $\varepsilon > 0$, $a_n \stackrel{\approx}{\varepsilon} L$ for $n \gg 1$. Equivalently, $L - \varepsilon < a_n < L + \varepsilon$. Since we are given that $a_n \leq M$ for $n \gg 1$, it follows that $L - \varepsilon < a_n \leq M$ for $n \gg 1$.

Now since ε is arbitrary, it follows that $L \leq M$.

5. For $n \ge 1$, define the sequence $\{b_n\}$ as follows:

$$b_n = \int_0^1 \cos^n\left(\frac{\pi x}{2}\right) \, dx$$

Prove that $b_n \to 0$.

Proof: Let $\varepsilon > 0$ be given. Choose N^* such that $\cos^{N^*}\left(\frac{\pi\varepsilon}{2}\right) < \varepsilon$. This can be achieved because $0 < \cos\left(\frac{\pi\varepsilon}{2}\right) < 1$ Then $n > N^* \Rightarrow b_n = \int_0^1 \cos^n\left(\frac{\pi x}{2}\right) dx = \int_0^\varepsilon \cos^n\left(\frac{\pi x}{2}\right) dx + \int_\varepsilon^1 \cos^n\left(\frac{\pi x}{2}\right) dx < \int_0^\varepsilon \cos^{N^*}\left(\frac{\pi x}{2}\right) dx + \int_\varepsilon^1 \cos^{N^*}\left(\frac{\pi x}{2}\right) dx < (1) \varepsilon + \varepsilon(1-\varepsilon) < 2\varepsilon$. (Here we have used the fact that $\cos^n\left(\frac{\pi x}{2}\right)$ is decreasing on [0, 1].)

Hence by the K- ε principle, $b_n \rightarrow 0$.