

SOLUTIONS: TEST III

19 NOVEMBER 2018

PART I [5 points each] Definitions & statements of theorems Be precise and careful.

- **1.** State the Intermediate Value Theorem.
 - Let $f: [a, b] \rightarrow \mathbf{R}$ be continuous and assume that f(a) < f(b). Then $\forall z \in \mathbf{R}$,

 $f(a) \le z \le f(b) \Rightarrow \exists c \in [a, b] \text{ such that } f(c) = z.$

- **2.** State the *Maximum Theorem*.
 - Let $f: [a, b] \rightarrow \mathbf{R}$ be continuous. Then f(x) has a maximum and minimum on [a, b].
- **3.** State the *Squeeze Theorem* for functions.
 - Suppose that $f(x) \le g(x) \le h(x)$ for $x_{\neq}^{\approx}p$. Then $f(x) \to L$ and $h(x) \to L$ as $x \to p \Rightarrow g(x) \to L$ as $x \to p$

- 4. State the *Limit Location Theorem* for functions.
 - If the limits exist,

$$f(x) \le M \text{ for } x_{\neq}^{\approx} p \implies \lim_{x \to p} f(x) \le M$$

- 5. Define *sequential compactness*.
 - A set S ⊆ R is sequentially compact if every sequence of points in S has a subsequence converging to a point in S.
- 6. State the *Positivity Theorem*.
 - If f is continuous at x = p, and f(p) > 0, then f(x) > 0 for $x \approx p$.
- 7. Define *sequential continuity*.
 - *F* is sequentially continuous at x = p if given $\{x_n\}, x_n \to p \Rightarrow f(x_n) \to f(p)$

PART II [6 pts each] Counter-Examples

Each of the following 9 assertions is false. Give an explicit counter-example to illustrate this. Answer any 7 of the 9. You may answer more than 7 for extra credit.

1. If $H: (0, 1) \rightarrow \mathbf{R}$ is continuous, then *H* is bounded.

Counterexample:

Let $H(x) = 1/x \quad \forall x \in (0, 1).$

2. Given two functions f: [0, 1] \rightarrow **R** and g: [0, 1] \rightarrow **R** such that each is *discontinuous* at x = 1/3, then fg is discontinuous at $x = \frac{1}{3}$

Counterexample:

Let
$$f(x) = \begin{cases} \frac{1}{3} & \text{if } x = 0 \\ 0 & \text{if } x \neq 0 \end{cases}$$
 Let $g(x) = \begin{cases} 0 & \text{if } x = 0 \\ \frac{1}{3} & \text{if } x \neq 0 \end{cases}$

Then (fg)(x) = 0 *for all* $x \in [0, 1]$

3. Let I = (0, 1). If $g: I \to \mathbf{R}$ is continuous, then g(I) is not a compact interval.

Counterexample: Let $g(x) = 3 \quad \forall x \in (0,1)$. Then g(I) = [3, 3].

4. There does not exist a continuous function $f: (0, 1] \to \mathbb{R}$ that has neither a global maximum nor a global minimum on (0, 1] and does not have the limit ∞ or $-\infty$ as $x \to 0^+$.

Counterexample:
$$f(x) = \begin{cases} \frac{1}{x} \sin \frac{1}{x} & \text{if } x \in \left(0, \frac{1}{\pi}\right) \\ 0 & \text{if } x \in \left(\frac{1}{\pi}, 1\right] \end{cases}$$

Note that for this example, x = 0 is an essential discontinuity.

5. If two functions, $f: \mathbf{R} \to \mathbf{R}$ and $g: \mathbf{R} \to \mathbf{R}$ satisfy the conditions that

$$\lim_{x \to 0} g(x) = 13 \text{ and } \lim_{x \to 13} f(x) = 17$$

then $\lim_{x\to 0} f \circ g(x)$ exists and equals 17.

Counterexample:

$$Let f(x) = \begin{cases} 17 \ if \ x \neq 13 \\ 0 \ if \ x = 13 \end{cases} \quad and \ let \ g(x) = \begin{cases} 13 \ if \ x \neq 0 \\ 0 \ if \ x = 0 \end{cases}$$

6. There does not exist a function $f: \mathbf{R} \to \mathbf{R}$ that is continuous only at x = 0.

Counterexample:

Let f(x) = x D(x) where D is the Dirichlet function defined by:

$$D(x) = \begin{cases} 1 & \text{if } x \in Q \\ 0 & \text{if } x \notin Q \end{cases}$$

7. If $F: [0, 1] \rightarrow \mathbf{R}$ is continuous and $\{b_n\}$ is a sequence in [0, 1] for which $\{F(b_n)\}$ converges, then $\{b_n\}$ must converge.

Counterexample:

Define F(x) = 5 for all $x \in [0, 1]$. Define $b_n = \begin{cases} 1 & \text{if } n \in N \text{ is even} \\ 0 & \text{if } n \in N \text{ is odd} \end{cases}$

8. If neither S nor T is a sequentially compact subset of **R**, then $S \cup T$ is not sequentially compact.

Counterexample: Let S = [0, 3] and T = [2, 5].

9. Let $h: [0, 1] \to \mathbf{R}$ be a function that achieves a global maximum on [0, 1]. Then the function $F(x) = (h(x))^4$ also achieves a global maximum value on the interval [0, 1].

Counterexample: Define $h(x) = \begin{cases} -x & \text{if } 0 \le x < 1 \\ 0 & \text{if } x = 1 \end{cases}$

Note that h has a global maximum value of 0 on [0, 1] but that $(h(x))^4$ has no global maximum on [0, 1].

PART III [12 pts each] **Proofs**

Instructions: Select any 4 of the following 6 problems. You may answer more than 4 to obtain extra credit.

1. Using only the definition of continuity, prove that the function

$$g(x) = \frac{x^4 + 5}{x^4 + x + 9}$$
 is continuous at x = 0.

Solution: To begin, we conjecture that $g(x) \rightarrow \frac{5}{9}$ as $x \rightarrow 0$.

Let $\epsilon > 0$ be given. Let $\delta = \min\left\{1, \frac{7}{13}\right\}$

Now since $|x| \le \delta \le 1$, clearly $|x| \le 1$ and so

$$|4x^3 - 5| \le 4|x^3| + 9| \le 13$$

Also

$$|x^4 + x + 9| \ge |9| - |x^4| - |x| \ge 9 - 2 = 7$$

Now let $\delta = min\{1, \frac{7}{13} \epsilon\}$ *; we find:*

$$|g(x) - 1| = \left| \frac{x^4 + 5}{x^4 + x + 9} - \frac{5}{9} \right| = \left| \frac{9(x^4 + 5) - 5(x^4 + x + 9)}{9(x^4 + x + 9)} - 1 \right| =$$

$$\left|\frac{4x^4 - 5x}{x^4 + x + 9}\right| \le \frac{|4x^4 - 5x|}{7} = |x| \frac{|4x^3 - 5|}{7} \le \frac{13}{7} |x| < \frac{13}{7} \delta < \epsilon$$

Hence f is continuous at x = 0.

(Alternatively, one may use the K- ϵ principle.)

2. (a) Let $p \in \mathbf{R}$. Write the negation of the statement $f: \mathbf{R} \to \mathbf{R}$ is continuous at x = p.

(*Note: "f* is *not continuous at p"* is not a sufficient answer. Use ε and δ in your answer.) *Solution:*

Since the definition of continuity of f at x = p is:

 $\forall \epsilon > 0 \ \exists \delta > 0 \ such that |f(x) - f(p)| < \varepsilon \ whenever \ x \in \mathbf{R} \ and |x - p| < \delta$, the logical negation of this sentence is:

 $\exists \epsilon > 0 \ \forall \delta > 0 \ \exists x \in \mathbf{R} \ such \ that |f(x) - f(p)| \ge \varepsilon \ and \ |x - p| < \delta.$

(b) Let $f: \mathbf{R} \to \mathbf{R}$ and $p \in \mathbf{R}$. Write the negation of the statement $\lim_{x \to p} f(x) = \infty$.

Solution: Since the definition of $\lim_{x \to p} f(x) = \infty$ is

 $\forall M > 0 \exists \delta > 0$ such that $|x - p| < \delta \Rightarrow f(x) > M$, the logical negation of this sentence is: $\exists M > 0 \ \forall \delta > 0 \exists x \text{ such that } |x - p| < \delta \text{ and } f(x) \leq M$.

3. Let $f: [0, 1] \rightarrow [0, 1]$ be continuous. Prove that $\exists p \in [0, 1]$ such that f(p) = p. *Hint:* Consider the two curves y = f(x) and y = x on [0, 1]. Sketch a possible graph.

Solution: Define h: $[0, 1] \rightarrow \mathbf{R}$ as follows: h(x) = f(x) - x for all $x \in [0, 1]$. Now since f and the identity function are continuous, h must be continuous by the linearity theorem. Next note that $h(0) = f(0) - 0 \le 0$, by definition of f, and that $h(1) = f(1) - 1 \ge 0$. Now, if either h(0) = 0 or h(1) = 0, then we are done, for it follows that either f(0) = 0 or f(1) = 1. So let us assume that h(0) < 0 and h(1) > 0. Then, invoking Bolzano's Theorem, there exists $p \in [a, b]$ such that h(p) = 0. And so, f(p) = p. (Note: p is called a **Fixed Point** of f.)

4. A function $f: \mathbf{R} \to \mathbf{R}$ is said to be a *Lipschitz function* if there exists a constant L > 0 such that for all $x, t \in \mathbf{R}$ |f(x) - f(t)| < L|x - t|.

Prove that if $f: \mathbf{R} \to \mathbf{R}$ is a Lipschitz function then f is continuous at each $\mathbf{p} \in \mathbf{R}$. *Hint:* Use the (ε, δ) -definition of continuity.

Solution: Let $p \in \mathbf{R}$. Let $\varepsilon > 0$ be given. We choose $\delta = \frac{\varepsilon}{L}$. Then

 $|f(x) - f(p)| < L|x - p| < L \delta = \varepsilon$

So f is continuous at x = p.

5. Determine all values of the constants *A* and *B* so that the following function is *continuous for all values of x*.

$$f(x) = \begin{cases} Ax - B & \text{if } x \le -1 \\ 2x^2 + 3Ax + B & \text{if } -1 < x \le 1 \\ 4 & \text{if } x > 1 \end{cases}$$

Solution: If f is continuous at x = -1, then $\lim_{x \to -1^+} f(x) = \lim_{x \to -1^-} f(x)$ Thus we obtain: -A - B = 2 - 3A + B. Equivalently: A - B = 1 (*) If f is continuous at x = 1, then $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^-} f(x)$ Thus we obtain: 2 + 3A + B = 4; Equivalently: 3A + B = 2. (**) Solving equations (*) and (**) simultaneously, we obtain:

$$A=rac{3}{4}$$
 and $B=-rac{1}{4}$

6. Prove that $\lim_{x \to 0^+} \int_0^1 \frac{t^2}{1 + t^4 x} dt = \frac{1}{3}$.

Solution: First observe that, since $x \rightarrow 0^+$ *and* $0 \le t \le 1$

$$\frac{t^2}{1+x} \le \frac{t^2}{1+t^4x} \le t^2$$

Using the basic properties of the Riemann integral:

$$\frac{1}{1+x}\int_{0}^{1}t^{2} dt = \int_{0}^{1}\frac{t^{2}}{1+x} dt \le \int_{0}^{1}\frac{t^{2}}{1+t^{4}x} dt \le \int_{0}^{1}t^{2} dt = \frac{1}{3}$$

Next, since $\lim_{x \to 0^+} \frac{1}{1+x} \int_0^1 t^2 dt = \int_0^1 t^2 dt = \frac{1}{3}$, the squeeze theorem yields the desired result.