PART I [5 points each] Definitions \& statements of theorems

Be precise and careful.

1. State the Intermediate Value Theorem.

- Let $f:[a, b] \rightarrow \boldsymbol{R}$ be continuous and assume that $f(a)<f(b)$. Then $\forall z \in \boldsymbol{R}$,

$$
f(a) \leq z \leq f(b) \Rightarrow \exists c \in[a, b] \text { such that } f(c)=z
$$

2. State the Maximum Theorem.

- Let $f:[a, b] \rightarrow \boldsymbol{R}$ be continuous. Then $f(x)$ has a maximum and minimum on $[a, b]$.

3. State the Squeeze Theorem for functions.

- Suppose that $f(x) \leq g(x) \leq h(x)$ for $x \neq p$. Then

$$
f(x) \rightarrow L \text { and } h(x) \rightarrow L \text { as } x \rightarrow p \Rightarrow g(x) \rightarrow L \text { as } x \rightarrow p
$$

4. State the Limit Location Theorem for functions.

- If the limits exist,

$$
f(x) \leq M \text { for } \quad x_{\neq}^{\approx} p \Rightarrow \lim _{x \rightarrow p} f(x) \leq M
$$

5. Define sequential compactness.

- A set $S \subseteq R$ is sequentially compact if every sequence of points in S has a subsequence converging to a point in S.

6. State the Positivity Theorem.

- Iff is continuous at $x=p$, and $f(p)>0$, then $f(x)>0$ for $x \approx p$.

7. Define sequential continuity.

- F is sequentially continuous at $x=p$ if given

$$
\left\{x_{n}\right\}, x_{n} \rightarrow p \Rightarrow f\left(x_{n}\right) \rightarrow f(p)
$$

PART II [6 pts each] Counter-Examples

Each of the following 9 assertions is false. Give an explicit counter-example to illustrate this. Answer any 7 of the 9. You may answer more than 7 for extra credit.

1. If $H:(0,1) \rightarrow \mathbf{R}$ is continuous, then H is bounded.

Counterexample:
Let $H(x)=1 / x \quad \forall x \in(0,1)$.
2. Given two functions $f:[0,1] \rightarrow \mathbf{R}$ and $g:[0,1] \rightarrow \mathbf{R}$ such that each is discontinuous at $\mathrm{x}=1 / 3$, then $f g$ is discontinuous at $x=\frac{1}{3}$

Counterexample:
Let $f(x)=\left\{\begin{array}{l}\frac{1}{3} \text { if } x=0 \\ 0 \text { if } x \neq 0\end{array}\right.$

$$
\text { Let } g(x)=\left\{\begin{array}{c}
0 \text { if } x=0 \\
\frac{1}{3} \text { if } x \neq 0
\end{array}\right.
$$

Then $(f g)(x)=0$ for all $x \in[0,1]$
3. Let $I=(0,1)$. If $g: I \rightarrow \mathbf{R}$ is continuous, then $g(I)$ is not a compact interval.

Counterexample: Let $g(x)=3 \quad \forall x \in(0,1)$.
Then $g(I)=[3,3]$.
4. There does not exist a continuous function $f:(0,1] \rightarrow \mathbf{R}$ that has neither a global maximum nor a global minimum on $(0,1]$ and does not have the limit ∞ or $-\infty$ as $x \rightarrow 0^{+}$.

Counterexample: $f(x)=\left\{\begin{array}{r}\frac{1}{x} \sin \frac{1}{x} \text { if } x \in\left(0, \frac{1}{\pi}\right] \\ 0 \text { if } x \in\left(\frac{1}{\pi}, 1\right]\end{array}\right.$
Note that for this example, $x=0$ is an essential discontinuity.
5. If two functions, $f: \mathbf{R} \rightarrow \mathbf{R}$ and $g: \mathbf{R} \rightarrow \mathbf{R}$ satisfy the conditions that

$$
\lim _{x \rightarrow 0} g(x)=13 \text { and } \lim _{x \rightarrow 13} f(x)=17
$$

then $\lim _{x \rightarrow 0} f \circ g(x)$ exists and equals 17.

Counterexample:

$$
\text { Let } f(x)=\left\{\begin{array}{l}
17 \text { if } x \neq 13 \\
0 \text { if } x=13
\end{array} \quad \text { and let } g(x)=\left\{\begin{array}{l}
13 \text { if } x \neq 0 \\
0 \text { if } x=0
\end{array}\right.\right.
$$

6. There does not exist a function $f: \mathbf{R} \rightarrow \mathbf{R}$ that is continuous only at $x=0$.

Counterexample:

Let $f(x)=x D(x)$ where D is the Dirichlet function defined by:

$$
D(x)= \begin{cases}1 & \text { if } \\ 0 & x \in Q \\ 0 & \text { if }\end{cases}
$$

7. If $F:[0,1] \rightarrow \mathbf{R}$ is continuous and $\left\{b_{n}\right\}$ is a sequence in $[0,1]$ for which $\left\{F\left(b_{\mathrm{n}}\right)\right\}$ converges, then $\left\{b_{n}\right\}$ must converge.

Counterexample:

Define $F(x)=5$ for all $x \in[0,1]$. Define $b_{n}=\left\{\begin{array}{l}1 \text { if } n \in N \text { is even } \\ 0 \text { if } n \in N \text { is odd }\end{array}\right.$
8. If neither S nor T is a sequentially compact subset of \mathbf{R}, then $S \cup T$ is not sequentially compact.

Counterexample: Let $S=[0,3]$ and $T=[2,5]$.
9. Let $h:[0,1] \rightarrow \mathbf{R}$ be a function that achieves a global maximum on $[0,1]$. Then the function $\mathrm{F}(\mathrm{x})=(\mathrm{h}(\mathrm{x}))^{4}$ also achieves a global maximum value on the interval $[0,1]$.
Counterexample: Define $h(x)=\left\{\begin{aligned}-x & \text { if } 0 \leq x<1 \\ 0 & \text { if } x=1\end{aligned}\right.$
Note that h has a global maximum value of 0 on [0, 1] but that $(h(x))^{4}$ has no global maximum on $[0,1]$.

PART III [12 pts each] Proofs

Instructions: Select any 4 of the following 6 problems. You may answer more than 4 to obtain extra credit.

1. Using only the definition of continuity, prove that the function

$$
g(x)=\frac{x^{4}+5}{x^{4}+x+9} \text { is continuous at } \mathrm{x}=0
$$

Solution: To begin, we conjecture that $g(x) \rightarrow \frac{5}{9}$ as $x \rightarrow 0$.
Let $\epsilon>0$ be given. Let $\delta=\min \left\{1, \frac{7}{13}\right\}$
Now since $|x| \leq \delta \leq 1$, clearly $|x| \leq 1$ and so

$$
\left|4 x^{3}-5\right| \leq 4\left|x^{3}\right|+9 \mid \leq 13
$$

Also

$$
\left|x^{4}+x+9\right| \geq|9|-\left|x^{4}\right|-|x| \geq 9-2=7
$$

Now let $\delta=\min \left\{1, \frac{7}{13} \epsilon\right\}$; we find:

$$
\begin{aligned}
& |g(x)-1|=\left|\frac{x^{4}+5}{x^{4}+x+9}-\frac{5}{9}\right|=\left|\frac{9\left(x^{4}+5\right)-5\left(x^{4}+x+9\right)}{9\left(x^{4}+x+9\right)}-1\right|= \\
& \left|\frac{4 x^{4}-5 x}{x^{4}+x+9}\right| \leq \frac{\left|4 x^{4}-5 x\right|}{7}=|x| \frac{\left|4 x^{3}-5\right|}{7} \leq \frac{13}{7}|x|<\frac{13}{7} \delta<\epsilon
\end{aligned}
$$

Hence f is continuous at $x=0$.
(Alternatively, one may use the $K-\epsilon$ principle.)
2. (a) Let $p \in \mathbf{R}$. Write the negation of the statement $f: \mathbf{R} \rightarrow \mathbf{R}$ is continuous at $\mathrm{x}=\mathrm{p}$.
(Note: " f is not continuous at p " is not a sufficient answer. Use ε and δ in your answer.)

Solution:

Since the definition of continuity of fat $x=p$ is:

$$
\forall \epsilon>0 \exists \delta>0 \text { such that }|f(x)-f(p)|<\varepsilon \text { whenever } x \in \boldsymbol{R} \text { and }|x-p|<\delta
$$ the logical negation of this sentence is:

$$
\exists \epsilon>0 \forall \delta>0 \exists x \in \boldsymbol{R} \text { such that }|f(x)-f(p)| \geq \varepsilon \text { and }|x-p|<\delta
$$

(b) Let $f: \mathbf{R} \rightarrow \mathbf{R}$ and $p \in \mathbf{R}$. Write the negation of the statement $\lim _{\boldsymbol{x} \rightarrow \boldsymbol{p}} \boldsymbol{f}(\boldsymbol{x})=\infty$.

Solution: Since the definition of $\lim _{\boldsymbol{x} \rightarrow \boldsymbol{p}} \boldsymbol{f}(\boldsymbol{x})=\infty$ is
$\forall M>0 \exists \delta>0$ such that $|x-p|<\delta \Rightarrow f(x)>M$,
the logical negation of this sentence is:
$\exists M>0 \forall \delta>0 \exists x$ such that $|x-p|<\delta$ and $f(x) \leq M$.
3. Let $f:[0,1] \rightarrow[0,1]$ be continuous. Prove that $\exists p \in[0,1]$ such that $f(p)=p$.

Hint: Consider the two curves $y=f(x)$ and $y=x$ on $[0,1]$. Sketch a possible graph.

Solution: Define $h:[0,1] \rightarrow \boldsymbol{R}$ as follows: $h(x)=f(x)-x$ for all $x \in[0,1]$. Now since f and the identity function are continuous, h must be continuous by the linearity theorem. Next note that $h(0)=f(0)-0 \leq 0$, by definition of f, and that $h(1)=f(1)-1 \geq 0$. Now, if either $h(0)=0$ or $h(1)=0$, then we are done, for it follows that either $f(0)=0$ or $f(1)=1$. So let us assume that $h(0)<0$ and $h(1)>0$. Then, invoking Bolzano's Theorem, there exists $p \in[a, b]$ such that $h(p)=0$. And so, $f(p)=p . \quad($ Note: p is called a Fixed Point of f.)
4. A function $f: \mathbf{R} \rightarrow \mathbf{R}$ is said to be a Lipschitz function if there exists a constant $\mathrm{L}>0$ such that for all $\mathrm{x}, \mathrm{t} \in \boldsymbol{R}|f(x)-f(t)|<L|x-t|$.

Prove that if $f: \mathbf{R} \rightarrow \mathbf{R}$ is a Lipschitz function then f is continuous at each $\mathbf{p} \in \mathbf{R}$.
Hint: Use the (ε, δ)-definition of continuity.

Solution: Let $p \in \boldsymbol{R}$. Let $\varepsilon>0$ be given.
We choose $\delta=\frac{\varepsilon}{L}$. Then

$$
|f(x)-f(p)|<L|x-p|<L \delta=\varepsilon
$$

So f is continuous at $x=p$.
5. Determine all values of the constants A and B so that the following function is continuous for all values of x.

$$
f(x)=\left\{\begin{array}{cc}
A x-B & \text { if } x \leq-1 \\
2 x^{2}+3 A x+B & \text { if }-1<x \leq 1 \\
4 & \text { if } x>1
\end{array}\right.
$$

Solution: Iff is continuous at $x=-1$, then $\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1^{-}} f(x)$
Thus we obtain: $-A-B=2-3 A+B$.
Equivalently: $\quad A-B=1 \quad\left(^{*}\right)$
Iff is continuous at $x=1$, then $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{-}} f(x)$
Thus we obtain: $2+3 A+B=4$;
Equivalently: $\quad 3 A+B=2 .(* *)$
Solving equations $\left(^{*}\right)$ and $\left({ }^{* *}\right)$ simultaneously, we obtain:

$$
\boldsymbol{A}=\frac{\mathbf{3}}{\mathbf{4}} \text { and } \boldsymbol{B}=-\frac{\mathbf{1}}{\mathbf{4}}
$$

6. Prove that $\lim _{x \rightarrow 0^{+}} \int_{0}^{1} \frac{t^{2}}{1+t^{4} x} d t=\frac{1}{3}$.

Solution: First observe that, since $x \rightarrow 0^{+}$and $0 \leq t \leq 1$

$$
\frac{t^{2}}{1+x} \leq \frac{t^{2}}{1+t^{4} x} \leq t^{2}
$$

Using the basic properties of the Riemann integral:

$$
\frac{1}{1+x} \int_{0}^{1} t^{2} d t=\int_{0}^{1} \frac{t^{2}}{1+x} d t \leq \int_{0}^{1} \frac{t^{2}}{1+t^{4} x} d t \leq \int_{0}^{1} t^{2} d t=\frac{1}{3}
$$

Next, since $\lim _{x \rightarrow 0^{+}} \frac{1}{1+x} \int_{0}^{1} t^{2} d t=\int_{0}^{1} t^{2} d t=\frac{1}{3}$, the squeeze theorem yields the desired result.

