
MATH 351               Solutions:  TEST III                19 November 2018 

 
Part I  [5 points each] Definitions & statements of theorems  
 Be precise and careful. 

1. State the Intermediate Value Theorem. 
 

 Let 𝑓: [𝑎, 𝑏] → 𝑹 be continuous and assume that f(a) < f(b). Then ∀𝑧 ∈ 𝑹, 

𝑓(𝑎) ≤ 𝑧 ≤ 𝑓(𝑏)  ⇒  ∃𝑐 ∈ [𝑎, 𝑏] 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝑐) = 𝑧. 

2. State the Maximum Theorem. 
 

 Let 𝑓: [𝑎, 𝑏] → 𝑹 be continuous.  Then f(x) has a maximum and minimum on [a, b]. 

 
3. State the Squeeze Theorem for functions. 

 Suppose that 𝑓(𝑥) ≤ 𝑔(𝑥) ≤ ℎ(𝑥) 𝑓𝑜𝑟  𝑥≠
≈𝑝.  Then 

𝑓(𝑥) → 𝐿  𝑎𝑛𝑑 ℎ(𝑥) → 𝐿 𝑎𝑠 𝑥 → 𝑝  ⇒ 𝑔(𝑥) → 𝐿  𝑎𝑠 𝑥 → 𝑝 
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4. State the Limit Location Theorem for functions. 
 

 If the limits exist,  

𝑓(𝑥) ≤ 𝑀 𝑓𝑜𝑟   𝑥≠
≈𝑝  ⇒ lim

𝑥→𝑝
𝑓(𝑥)  ≤ 𝑀 

 

5. Define sequential compactness. 

 

 A set 𝑆 ⊆ 𝑅 is sequentially compact if every sequence of points in S has a subsequence converging to a 

point in S. 

 
6. State the Positivity Theorem.  

 

 If f is continuous at x = p, and f(p) > 0, then f(x) > 0 for 𝑥 ≈ 𝑝.  
 

 

7.  Define sequential continuity.  

 

 F is sequentially continuous at x = p if given 

 {𝑥𝑛},  𝑥𝑛 → 𝑝  ⇒ 𝑓(𝑥𝑛) → 𝑓(𝑝) 

 

 

Part II  [6 pts each]   Counter-Examples 

Each of the following 9 assertions is false.  Give an explicit counter-example to illustrate this. 

Answer any 7 of the 9.  You may answer more than 7 for extra credit. 

1.  If  H: (0, 1) → R is continuous, then H is bounded. 

Counterexample:    

Let H(x) = 1/x     ∀ x(0, 1). 

 

2. Given two functions f: [0, 1] → R and g: [0, 1] → R such that each is discontinuous at x = 1/3, then 

𝑓𝑔  is discontinuous at 𝑥 =
1

3
 

 

Counterexample: 

Let  𝑓(𝑥) = {

1

3
  𝑖𝑓 𝑥 = 0

0  𝑖𝑓 𝑥 ≠ 0

                      𝐿𝑒𝑡 𝑔(𝑥) = {

 
0  𝑖𝑓 𝑥 = 0

1

3
  𝑖𝑓 𝑥 ≠ 0

 

 

Then (𝑓𝑔)(𝑥) = 0 for all x ∈ [0, 1]  
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3.   Let I = (0, 1).   If g: I → R is continuous, then g(I) is not a compact interval. 

Counterexample:  Let 𝑔(𝑥) = 3    ∀𝑥 ∈ (0,1). 

Then g(I)=[3, 3]. 

 

 

4.   There does not exist a continuous function 𝑓: (0, 1] → R that has neither a global maximum nor a 

global minimum on (0, 1] and does not have the limit ∞ or –∞ as 𝑥 → 0+. 
 

Counterexample:    𝑓(𝑥) =

{
 

 
 

1

𝑥
sin

1

𝑥
  𝑖𝑓 𝑥 ∈ (0,

1

𝜋
]

0  𝑖𝑓 𝑥 ∈ (
1

𝜋
, 1]

 

Note that for this example, x = 0 is an essential discontinuity. 

 

5.    If two functions, f: R → R and g: R → R satisfy the conditions that  

lim
𝑥→0

𝑔(𝑥) = 13 𝑎𝑛𝑑  lim
𝑥→13

𝑓(𝑥) = 17  

𝑡ℎ𝑒𝑛 lim
𝑥→0

𝑓 ∘ 𝑔(𝑥)  𝑒𝑥𝑖𝑠𝑡𝑠 𝑎𝑛𝑑 𝑒𝑞𝑢𝑎𝑙𝑠 17. 

 

Counterexample:   

Let f(x) = {

17  𝑖𝑓 𝑥 ≠ 13

0   𝑖𝑓  𝑥 = 13
                   𝑎𝑛𝑑 𝑙𝑒𝑡 𝑔(𝑥) = {

13  𝑖𝑓 𝑥 ≠ 0

0   𝑖𝑓  𝑥 = 0
 

6. There does not exist a function f: R → R that is continuous only at x = 0. 

Counterexample:   

Let f(x) = x D(x)  where D is the Dirichlet function defined by: 

𝐷(𝑥) = {
1 𝑖𝑓 𝑥 ∈ 𝑄
0 𝑖𝑓 𝑥 ∉ 𝑄

 

7.    If F: [0, 1] → R is continuous and {bn} is a sequence in [0, 1] for which {F(bn)} converges, then 

{bn} must converge.   

Counterexample:   

Define F(x) = 5 for all x[0, 1].  Define 𝑏𝑛 = {
1 𝑖𝑓 𝑛 ∈ 𝑁 𝑖𝑠 𝑒𝑣𝑒𝑛
0   𝑖𝑓 𝑛 ∈ 𝑁 𝑖𝑠 𝑜𝑑𝑑

  

8.    If neither S nor T is a sequentially compact subset of R, then 𝑆 ∪ 𝑇  is not sequentially compact. 

 

Counterexample:  Let S = [0, 3] and T = [2, 5]. 
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9.    Let h: [0, 1]  R be a function that achieves a global maximum on [0, 1].    Then the  

function F(x) = (h(x))4 also achieves a global maximum value on the interval [0, 1]. 

Counterexample:  Define ℎ(𝑥) = {
−𝑥  𝑖𝑓 0 ≤ 𝑥 < 1
  0   𝑖𝑓 𝑥 = 1      

 

Note that h has a global maximum value of 0 on [0, 1] but that  (h(x))4 has no global maximum 

on [0, 1]. 

 

Part III  [12 pts each] Proofs 

Instructions:   Select any 4 of the following 6 problems.  You may answer more than 4 to obtain extra credit. 

1. Using only the definition of continuity, prove that the function 

𝑔(𝑥) =
𝑥4+5

𝑥4+𝑥+9
   is continuous at x = 0. 

 

 

Solution: To begin, we conjecture that 𝑔(𝑥) →
5

9
 𝑎𝑠 𝑥 → 0. 

 Let 𝜖 > 0 𝑏𝑒 𝑔𝑖𝑣𝑒𝑛.   𝐿𝑒𝑡 𝛿 = 𝑚𝑖𝑛 {1,
7

13
}  

Now since |𝑥| ≤ 𝛿 ≤ 1, 𝑐𝑙𝑒𝑎𝑟𝑙𝑦  |𝑥| ≤ 1  𝑎𝑛𝑑 𝑠𝑜 

|4𝑥3 − 5| ≤ 4|𝑥3| + 9| ≤ 13 

𝐴𝑙𝑠𝑜 

|𝑥4 + 𝑥 + 9| ≥ |9| − |𝑥4| − |𝑥| ≥ 9 − 2 = 7 

Now let 𝛿 = 𝑚𝑖𝑛 {1,
7

13
 𝜖}; we find: 

 

|𝑔(𝑥) − 1| = |
𝑥4+5

𝑥4+𝑥+9
−
5

9
|=|

9(𝑥4+5)−5(𝑥4+𝑥+9)

9(𝑥4+𝑥+9)
− 1|= 

 

 |
4𝑥4−5𝑥

𝑥4+𝑥+9
| ≤

|4𝑥4−5𝑥|

7
= |𝑥|

|4𝑥3−5|

7
≤

13

7
 |𝑥| <

13

7
𝛿 < 𝜖 

 
Hence f is continuous at x = 0. 

 

   (Alternatively, one may use the K- 𝜖 principle.) 
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2.  (a)  Let p ∈ 𝐑.  Write the negation of the statement f: R  R is continuous at x = p. 

(Note:  “f is not continuous at p” is not a sufficient answer.  Use  and  in your answer.) 

Solution:   

Since the definition of continuity of f at x = p is: 

∀𝜖 > 0 ∃𝛿 > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 |𝑓(𝑥) − 𝑓(𝑝)| < 𝜀 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 𝑥 ∈ 𝑹 𝑎𝑛𝑑 |𝑥 − 𝑝| < 𝛿, 

the logical negation of this sentence is: 

∃𝜖 > 0  ∀𝛿 > 0 ∃ 𝑥 ∈ 𝑹 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡|𝑓(𝑥) − 𝑓(𝑝)| ≥ 𝜀 𝑎𝑛𝑑 |𝑥 − 𝑝| < 𝛿. 

 

  (b)  Let f: R  R and  p ∈ 𝐑.  Write the negation of the statement  𝐥𝐢𝐦
𝒙→𝒑

𝒇(𝒙) = ∞. 

Solution:  Since the definition of  𝐥𝐢𝐦
𝒙→𝒑

𝒇(𝒙) = ∞ is  

∀𝑀 > 0 ∃𝛿 > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡|𝑥 − 𝑝| < 𝛿 ⇒  𝑓(𝑥) > 𝑀, 

the logical negation of this sentence is: 

 ∃𝑀 > 0  ∀𝛿 > 0 ∃𝑥 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡|𝑥 − 𝑝| < 𝛿 𝑎𝑛𝑑 𝑓(𝑥) ≤ 𝑀. 

 

3. Let f: [0, 1] → [0, 1] be continuous.  Prove that ∃𝑝 ∈ [0, 1] such that 𝑓(𝑝) = 𝑝.  

Hint:  Consider the two curves 𝑦 = 𝑓(𝑥) and 𝑦 = 𝑥 on [0, 1].  Sketch a possible graph. 

 

Solution:  Define h: [0, 1]  R  as follows:  h(x) = f(x) – x  for all x[0, 1].  Now since f and the identity 

function are continuous, h must be continuous by the linearity theorem. Next note that h(0) = f(0) – 0  0, by 

definition of  f, and that h(1) = f(1) – 1  0. Now, if either h(0) = 0 or h(1) = 0, then we are done, for it follows 

that either f(0) = 0 or f(1) = 1.   So let us assume that h(0) < 0 and h(1) > 0.  Then, invoking Bolzano’s 

Theorem, there exists p[a, b] such that h(p) = 0.  And so, f(p) = p.   (Note:  p is called a Fixed Point of  f.) 

 

 

4. A function f: R  R is said to be a Lipschitz function if there exists a constant L > 0 such that 

for all x, t  R  |𝑓(𝑥) − 𝑓(𝑡)| < 𝐿|𝑥 − 𝑡|. 

Prove that if f: R  R is a Lipschitz function then f is continuous at each p  R. 

Hint:  Use the (𝜀, 𝛿)-definition of continuity. 

 

Solution: Let 𝑝 ∈ 𝑹 .  Let 𝜀 > 0 be given.  

We choose   𝛿 =
𝜀

𝐿
. Then 

|𝑓(𝑥) − 𝑓(𝑝)| < 𝐿|𝑥 − 𝑝| < 𝐿 𝛿 = 𝜀 

So f is continuous at x = p. 
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5. Determine all values of the constants A and B so that the following function is continuous  

for all values of x. 

𝑓(𝑥) =

{
 
 

 
 

  

𝐴𝑥 − 𝐵                          𝑖𝑓 𝑥 ≤ −1

2𝑥2 + 3𝐴𝑥 + 𝐵            𝑖𝑓 − 1 < 𝑥 ≤ 1 

       4                             𝑖𝑓 𝑥 > 1      

 

 

Solution: If f is continuous at x = -1, then   lim
𝑥→−1+

𝑓(𝑥) = lim
𝑥→−1−

𝑓(𝑥) 

Thus we obtain:  -A – B = 2 – 3A + B. 

Equivalently:     A – B = 1   (*) 

If f is continuous at x = 1, then   lim
𝑥→1+

𝑓(𝑥) = lim
𝑥→1−

𝑓(𝑥) 

Thus we obtain:  2 + 3A + B = 4; 

Equivalently:    3A + B = 2.  (**) 

Solving equations (*) and (**) simultaneously, we obtain: 

𝑨 =
𝟑

𝟒
  𝑎𝑛𝑑  𝑩 = −

𝟏

𝟒
 

 

6.   Prove that lim
𝑥→0+

∫
𝑡2

1+𝑡4𝑥

1

0
𝑑𝑡 =

1

3
 . 

Solution:    First observe that, since 𝑥 → 0+𝑎𝑛𝑑 0 ≤ 𝑡 ≤ 1 

𝑡2

1 + 𝑥
≤

𝑡2

1 + 𝑡4𝑥
≤ 𝑡2 

Using the basic properties of the Riemann integral:  

1

1 + 𝑥
 ∫ 𝑡2
1

0

𝑑𝑡 = ∫
𝑡2

1 + 𝑥

1

0

𝑑𝑡 ≤ ∫
𝑡2

1 + 𝑡4𝑥

1

0

𝑑𝑡 ≤ ∫ 𝑡2
1

0

𝑑𝑡 =
1

3
  

Next, since lim
𝑥→0+

 
1

1+𝑥
 ∫ 𝑡2
1

0
𝑑𝑡 = ∫ 𝑡2

1

0
𝑑𝑡 =

1

3
, the squeeze theorem yields the desired result. 


