MATH 100 QUESTIONS FOR CLASS DISCUSSION 5 SEPTEMBER 2019

Section 1.3 Functions and Equations

In the following equations, find a solution without performing any manipulations.

1. $10-\mathrm{y}=13$
2. $\frac{w}{4}=\frac{7}{4}$
3. $\sqrt{x+1}=7$
4. $7+z^{2}=7$

In each of the following explain why there is no solution:
5. $\sqrt{x+8}=-4$
6. $\sqrt{x+1}=7$
7. $-5 x^{2}=13$
8. $\frac{3}{x+1}=0$

PROBLEMS
In Problems 17-20, is the value of the variable a solution to the equation?
17. $t+3=t^{2}+9, t=3$

ANSWER © \dagger
WORKED SOLUTION © \oplus
18. $x+3=x^{2}-9, x=-3$
19. $\frac{\Delta+3}{v-3}=1, a=0$

ANSWER © \ddagger
20. $\frac{3+a}{3-a}=1, a=0$

- In Problems 21-22, use the graph of $y=v(x)$ in Figure 1.12.

21. Solve $v(x)=60$.

ANSWER ($)$
WORKED SOLUTION ($)$
22. Evaluate $\mathcal{V}(60)$.
23. The tuition C, in dollars, for a semester at a small public university t years from now is given by

$$
C=3000+100 t
$$

(a) Using the graph of C shown in Figure 1.13, estimate how many years it will take for tuition to reach $\$ 3700$.

(b) Check your answer to part (a) by substituting it into the equation

$$
3000+100 t=3700 .
$$

24. If a company sells \& software packages, its profit per package P, in dollars, is given by

$$
P=10,000-\frac{100,000}{s}
$$

(a) Using the graph of P shown in Figure 1.14 , estimate the number of packages sold when profits per package are $\$ 8000$.

(b) Check your answer to part (a) by substituting it into the equation

$$
10,000-\frac{100,000}{s}=8000
$$

Solve the equations in Problems 25-30. $\frac{5}{}$
25. $3 z=22$

ANSWER © ${ }^{(9)}$
WORKED SOLUTION © ${ }^{-}$
26. $5 x+12=90$
27. $10-2 x=60$

ANSWER (${ }^{(+)}$
28. $3(x-5)=12$
29. $\frac{x+2}{5}=10$

ANSWER ($)$
WORKED SOLUTION ()
30. $2 x+5=4 x-9$
31. Scott developed the following solution to the equation $2(x+3)=8$.

$$
\begin{array}{r}
2(x+3)=8 \\
2 x+6=8 \\
2 x=2 \\
x=1 .
\end{array}
$$

Describe an alternate first step that could have been used to arrive at the same solution.
32. The number of gallons of gas, g, in a car's tank, d miles after stopping for gas, is given by

$$
g=15-d / 20
$$

(a) Write an equation whose solution is the number of miles it takes for the amount of gas in the tank to reach 10 gallons.
(b) Make a plot of the gallons left for $d=40,60,80,100,120,140$, and indicate the solution $m=100$ to the equation in part (a).
33. A town's population P, in thousands, t years after its incorporation is given by the function $P=30+2 t$.
(a) Write an equation whose solution is when the town's population reaches 50,000 .

ANSWER (9)
WORKED SOLUTION (*)
(b) Solve the equation in part (a) by graphing both sides on the same axes.

```
ANSWER (%)
WORKED SOLUTION (*)
```

(c) Check your answer by solving the equation algebraically.

- In Problems 61-68, does the equation have a solution? Explain how you know without solving it.

61. $2 x-3=7$

ANSWER \oplus
WORKED SOLUTION \oplus
62. $x^{2}+3=7$
63. $\frac{x x^{2}}{3 x^{2}-1}=1$

ANSWER \oplus
64. $4=5+x^{2}$
65. $\frac{x+3}{2 x+5}=1$

ANSWER © \dagger
WORKED SOLUTION \oplus
66. $\frac{x+3}{5+y}=1$
67. $\frac{x+3}{2 x+5}=1$

ANSWER \oplus
68. $\frac{v+1}{2 q}=\frac{1}{2}$

Section 1.4 Functions and change

1. The population, in people, of a city, $P=f(t)$, is a function of the number of years, t, since 2010 .
```
ANSWER (+)
WORKED SOLUTION (+)
```

2. The number of gallons of gas in a car, $g=f(m)$, is a function of the number of miles driven, m.
3. The number of smartphones, $N=f(p)$, purchased is a function of the price p, in dollars, of the smartphone. ANSWER $\left.{ }^{(}\right)$
4. The cost, $C=f(w)$, in dollars of buying a chemical is a function of the weight bought, w, in pounds.

- In Exercises 5-7, let $g(l)$ give the market value (in $\$ 1000 \mathrm{~s}$) of a house in year t. What does the statement say about the house?

5. $g(5)-g(0)=30$

ANSWER \oplus
WORKED SOLUTION ©
6. $\frac{g(10)-g(4)}{10-4}=3$
7. $\frac{g(20)-8(12)}{20-12}=-1$

Find the average rate of change of $g(x)=2 x^{3}-3 x^{2}$ on the interval in Problems 15-18.
15. Between 1 and 3 .

ANSWER \oplus
16. Between -1 and 4 .
17. Between 0 and 10 .

ANSWER ©
WORKED SOLUTION \oplus
18. Between -0.1 and 0.1 .
24. The graph of $P=f(t)$ in Figure 1.16 gives the population of a town, in thousands, after t years.

(a) Find the average rate of change of the population of the town during the first 10 years.
(b) Does the population of the town grow more between $t=5$ and $t=10$ years, or between $t=15$ and $t=30$ years? Explain.
(c) Does the population of the town grow faster between $t=5$ and $t=10$ years, or between $t=15$ and $t=30$ years? Explain.

