I [4 pts each] Write each of the following in the slope-intercept form.
(a) $8 x+4 y=99$

Solution:

$$
\begin{gathered}
4 y=99-8 x \\
y=\frac{99}{4}-\frac{8}{4} x \\
y=-2 x+\frac{99}{4}
\end{gathered}
$$

(b) $y-9=3(x-5)$

Solution:

$$
\begin{gathered}
y-9=3 x-15 \\
y=3 x-6
\end{gathered}
$$

(c) $4(x-y)-3(x+y+1)=5+8 y$

Solution:

$$
\begin{gathered}
4 x-4 y-3 x-3 y-3=5+8 y \\
x-7 y-3-3=5+8 y \\
x-7 y-3-3=5+8 y \\
x-3=5+15 y \\
x-8=15 y \\
15 y=x-8 \\
y=\frac{1}{15} x-\frac{8}{15}
\end{gathered}
$$

II [4 pts each] Find the equation of a line that passes through $(7,11)$ and is parallel to the line

$$
\mathrm{y}=-3 \mathrm{x}+111
$$

Express your answer in any form you wish.

Solution:

The given line has slope -3 ; hence, the parallel line must have slope -3 .
Since we are given a point on the new line, we may use the point-slope form:

$$
y-11=-3(x-7)
$$

III [4 pts each] Solve the following system of linear equations using Gauss' method (that is, by elimination).

$$
\begin{aligned}
& 4 x-3 y=11 \\
& 7 x+2 y=41
\end{aligned}
$$

Solution:

To solve for x , we multiply the first equation by 2 and the second equation by 3 to obtain:

$$
\begin{aligned}
& 8 x-6 y=22 \\
& 21 x+6 y=123
\end{aligned}
$$

Next, adding the two equations (i.e., adding the left-hand sides, and the right-hand sides), we find:

$$
29 x=145
$$

Hence $x=\frac{145}{29}=5$.
Substituting $\mathrm{x}=5$ into the first original equation:

$$
\begin{gathered}
4(5)-3 y=11 \\
20-3 y=11 \\
-3 y=-9 \\
y=3
\end{gathered}
$$

Thus the final answer is $\mathbf{x}=\mathbf{5}$ and $\mathbf{y}=\mathbf{3}$. (This solution is easy to check by plugging these numbers into the original two equations.)

IV When the carnival comes to town, a group of students wants to attend. The cost of admission and going on 3 rides is $\$ 12.50$, while the cost of admission and going on 6 rides is $\$ 17$.
(a) [4 pts] How much does it cost to go on only one ride?

What if any assumptions have you made?

Solution: Since the cost of admission and 3 rides is $\$ 12.50$, and the cost of three more rides is $17.00-12.50=\$ 4.50$

Thus the cost of each ride is $\$ \frac{4.50}{3}=\$ \mathbf{1 . 5 0}$
Here we are assuming the cost depends linearly on the number of rides; that is, all rides are of equal cost.
(b) [2 pts] Write a linear function to represent the $\operatorname{cost} \mathrm{C}(\mathrm{n})$ of entering the carnival and going on n rides.

Solution:

Since the cost of admission plus 3 rides is 12.50 , and each ride costs 1.50 , it
follows that the cost of admission is $12.50-3(1.50)=\$ 8.00$
Hence the cost, $\mathrm{C}(\mathrm{n})$, of admission and n rides is:

$$
C(n)=8.00+1.5 n .
$$

(c) [2 pts] Express this function in slope-intercept form.

Solution:

Slope-intercept form: $\mathrm{C}=1.5 \mathrm{n}+8$

