CLASS DISCUSSION: 20 NOVEMBER 2019

THE FTC

- **1.** How is the Riemann integral defined for functions that are not necessarily positive?
- 2. Define *average value* of a function over an interval.
- **3.** State the two versions of the *Fundamental Theorem of Calculus*.
- **4.** Find the area beneath the given curve lying above the given interval:
 - (a) $f(x) = x^3$ above [1, 3]
 - (b) $g(x) = \sin x \text{ over } [0, \pi]$
 - (c) $z(x) = (x 1)^2$ over [0, 3]
 - (d) $h(x) = (\ln x) / x$ over [1, 4]
 - (e) $s(t) = t^3(2 + 3t^4)^3$ over [0, 1]
- 5. For each function in (4), find the *average value* over the given interval.
- **6.** Using the FTC, compute g'(e) given that

$$g(x) = \int_{0}^{x} t^{5} (5 - 4 \ln t)^{13} dt$$

7. Using the FTC compute:

$$\frac{d}{dx}\int_{0}^{x}e^{-u^{2}} du$$

8. Let 0 < k < 1 and consider the Elliptic Integral:

$$E(x) = \int_{0}^{x} \frac{1}{\sqrt{1 - k^2 \sin^2 t}} dt$$

Find dE/dx.

9. Using the FTC and the Chain Rule, calculate dF/dx given that:

$$F(x) = \int_{0}^{\sin x} \frac{1}{1 + v^5} dv$$

10. Consider the function defined by:

$$H(x) = \int_{\frac{\pi}{2}}^{x^3} \cos t \, dt$$

Calculate dH/dt by:

(a) Using the FTC and the Chain Rule.

- (b) By first performing the integration.
- (c) Compare the two answers that you have obtained.

11. A particle is moving along a line so that its velocity is given by: $v(t) = (t-1)(t-4)(t-5) = t^3 - 10t^2 + 29t - 20$ ft/sec at time t seconds.

- (a) Find the *displacement* of the particle over the time interval [1, 5].
- (b) Find the *total distance* traveled by the particle over the time interval [1, 5].
- **12.** Find the *area* of the region bounded by the graphs of the given functions. Sketch!
- **13.** (a) $y = x^2 + 2$, y = -x, x = 0, and x = 1.
 - (b) $y = 2 x^2$ and y = x
 - (c) $y = \sin x$ and $y = \cos x$ over $[\pi/4, 5\pi/4]$
 - (d) $y = 3x^3 x^2 10x$ and $y = 2x x^2$
 - (e) $y = x^3$ and $y = x^6$
 - (f) $y = x^3 x$ and y = 0
 - (g) $y = x^2 4x + 3$ and $y = 3 + 2x x^2$
- **14.** (*University of Michigan*) Let C(t) be the temperature, in degrees Fahrenheit, of a warm can of soda t minutes after it was put in a refrigerator. Suppose C(10) = 62.
 - (a) Assuming C is invertible, give a practical interpretation of the statement $C^{-1}(45) = 40$
 - (b) Give a practical interpretation of the statement C'(10) = -0.4.
 - (c) Give a practical interpretation of the statement $\int_0^{10} C'(t) dt = -5$
 - (d) Assuming the statements in parts (a)-(c) are true, determine C(0).
 - (e) What is the practical meaning of $\int_0^1 C(t) dt$?

> Exercises from Oxford Math Center:

1.
a.
$$\int_{0}^{1} (x^{3} + x^{2}) dx$$

b. $\int_{0}^{\pi/2} \cos x \, dx$
c. $\int_{1}^{2} (4x^{2} - x) \, dx$
d. $\int_{0}^{\pi/4} \frac{1}{3} \sec^{2} x \, dx$
e. $\int_{2}^{5} \frac{x+2}{\sqrt{x-1}} \, dx$
f. $\int_{1}^{9} \frac{1}{\sqrt{x}(1+\sqrt{x})^{2}} \, dx$
g. $\int_{0}^{\pi/4} \tan^{3} x \cos x \, dx$
h. $\int_{0}^{\pi/3} \sec x \tan x \, dx$
i. $\int_{0}^{\sqrt{\pi}} x \sin(x^{2}) \, dx$
j. $\int_{0}^{\pi/3} \frac{1-\sin^{2} x}{\cos x} \, dx$
l. $\int_{\pi/6}^{\pi/2} \frac{1-\sin^{2} x}{\cos x} \, dx$
m. $\int_{0}^{1} x^{2} \sqrt{4+5x^{3}} \, dx$

n.
$$\int_{0}^{2} \frac{1}{(3x+2)^{2}} dx$$

o.
$$\int_{0}^{2} \frac{4y}{\sqrt{25-4y^{2}}} dy$$

p.
$$\int_{0}^{1} 18x\sqrt{3x^{2}+1} dx$$

q.
$$\int_{0}^{\sqrt{2}/4} \frac{t}{\sqrt{1-4t^{2}}} dt$$

r.
$$\int_{4}^{8} \frac{3t}{\sqrt{t^{2}-15}} dt$$

s.
$$\int_{0}^{\pi/2} \sec^{2}\left(\frac{x}{2}\right) dx$$

t.
$$\int_{0}^{\pi/4} \cos^{2}(2x) \sin(2x) dx$$

u.
$$\int_{0}^{1/2} \frac{\operatorname{Arctan}(2x)}{1+4x^{2}} dx$$

v.
$$\int_{0}^{1/\sqrt{2}} \frac{x}{\sqrt{1-4x^{4}}} dx$$

w.
$$\int_{1}^{e} \frac{\ln \sqrt{x}}{x} dx$$

x.
$$\int_{3}^{6} \frac{y}{3\sqrt{y^{2}-8}} dy$$

 \sim

2. Find the area between the graph of the given function and the x-axis over the given interval

a.
$$y = x^3$$
; $[-1,3]$
b. $y = \sin x$; $[-\frac{\pi}{2}, \frac{\pi}{2}]$
c. $y = -x^2 + 4$; $[-4,2]$
d. $y = x^3 - 3x^2$; $[1,4]$
e. $y = \frac{1}{4}x^4 - x^2$; $[-1,1]$
f. $y = 3x^4 + 4x^3$; $[-1,1]$

