CLASS DISCUSSION: 20 NOVEMBER 2019

THE FTC

1. How is the Riemann integral defined for functions that are not necessarily positive?
2. Define average value of a function over an interval.
3. State the two versions of the Fundamental Theorem of Calculus.
4. Find the area beneath the given curve lying above the given interval:
(a) $f(x)=x^{3}$ above $[1,3]$
(b) $\mathrm{g}(\mathrm{x})=\sin \mathrm{x}$ over $[0, \pi]$
(c) $\mathrm{z}(\mathrm{x})=(\mathrm{x}-1)^{2}$ over $[0,3]$
(d) $h(x)=(\ln x) / x$ over $[1,4]$
(e) $\mathrm{s}(\mathrm{t})=\mathrm{t}^{3}\left(2+3 \mathrm{t}^{4}\right)^{3}$ over $[0,1]$
5. For each function in (4), find the average value over the given interval.
6. Using the FTC, compute $g^{\prime}(e)$ given that

$$
g(x)=\int_{0}^{x} t^{5}(5-4 \ln t)^{13} d t
$$

7. Using the FTC compute:

$$
\frac{d}{d x} \int_{0}^{x} e^{-u^{2}} d u
$$

8. Let $0<\mathrm{k}<1$ and consider the Elliptic Integral:

$$
E(x)=\int_{0}^{x} \frac{1}{\sqrt{1-k^{2} \sin ^{2} t}} d t
$$

Find $\mathrm{dE} / \mathrm{dx}$.
9. Using the FTC and the Chain Rule, calculate $\mathrm{dF} / \mathrm{dx}$ given that:

$$
F(x)=\int_{0}^{\sin x} \frac{1}{1+v^{5}} d v
$$

10. Consider the function defined by:

$$
H(x)=\int_{\frac{\pi}{2}}^{x^{3}} \cos t d t
$$

Calculate dH/dt by:
(a) Using the FTC and the Chain Rule.
(b) By first performing the integration.
(c) Compare the two answers that you have obtained.
11. A particle is moving along a line so that its velocity is given by:
$v(t)=(t-1)(t-4)(t-5)=t^{3}-10 t^{2}+29 t-20 \mathrm{ft} / \mathrm{sec}$ at time t seconds.
(a) Find the displacement of the particle over the time interval [1,5].
(b) Find the total distance traveled by the particle over the time interval [1, 5].
12. Find the area of the region bounded by the graphs of the given functions. Sketch!
13. (a) $y=x^{2}+2, y=-x, x=0$, and $x=1$.
(b) $y=2-x^{2}$ and $y=x$
(c) $\mathrm{y}=\sin \mathrm{x}$ and $\mathrm{y}=\cos \mathrm{x}$ over $[\pi / 4,5 \pi / 4]$
(d) $y=3 x^{3}-x^{2}-10 x$ and $y=2 x-x^{2}$
(e) $y=x^{3}$ and $y=x^{6}$
(f) $y=x^{3}-x$ and $y=0$
(g) $y=x^{2}-4 x+3$ and $y=3+2 x-x^{2}$
14. (University of Michigan) Let $\mathrm{C}(\mathrm{t})$ be the temperature, in degrees Fahrenheit, of a warm can of soda t minutes after it was put in a refrigerator. Suppose $C(10)=62$.
(a) Assuming C is invertible, give a practical interpretation of the statement $C^{-1}(45)=40$
(b) Give a practical interpretation of the statement $\mathrm{C}^{\prime}(10)=-0.4$.
(c) Give a practical interpretation of the statement $\int_{0}^{10} C^{\prime}(t) d t=-5$
(d) Assuming the statements in parts (a)-(c) are true, determine $\mathrm{C}(0)$.
(e) What is the practical meaning of $\int_{0}^{1} C(t) d t$?

> Exercises from Oxford Math Center:

1.

a. $\int_{0}^{1}\left(x^{3}+x^{2}\right) d x$
n. $\int_{0}^{2} \frac{1}{(3 x+2)^{2}} d x$
b. $\int_{0}^{\pi / 2} \cos x d x$
o. $\int_{0}^{2} \frac{4 y}{\sqrt{25-4 y^{2}}} d y$
c. $\int_{1}^{2}\left(4 x^{2}-x\right) d x$
p. $\int_{0}^{1} 18 x \sqrt{3 x^{2}+1} d x$
d. $\int_{0}^{\pi / 4} \frac{1}{3} \sec ^{2} x d x$
q. $\int_{0}^{\sqrt{2} / 4} \frac{t}{\sqrt{1-4 t^{2}}} d t$
e. $\int_{2}^{5} \frac{x+2}{\sqrt{x-1}} d x$
r. $\int_{4}^{8} \frac{3 t}{\sqrt{t^{2}-15}} d t$
f. $\int_{1}^{9} \frac{1}{\sqrt{x}(1+\sqrt{x})^{2}} d x$
s. $\int_{0}^{\pi / 2} \sec ^{2}\left(\frac{x}{2}\right) d x$
g. $\int_{0}^{\pi / 4} \tan ^{3} x \cos x d x$
t. $\int_{0}^{\pi / 4} \cos ^{2}(2 x) \sin (2 x) d x$
h. $\int_{0}^{\pi / 3} \sec x \tan x d x$
u. $\int_{0}^{1 / 2} \frac{\operatorname{Arctan}(2 x)}{1+4 x^{2}} d x$
i. $\int_{0}^{\sqrt{\pi}} x \sin \left(x^{2}\right) d x$
j. $\int_{0}^{\pi / 3} \sin (2 x) \cos ^{2}(2 x) d x$
v. $\int_{0}^{1 / \sqrt{2}} \frac{x}{\sqrt{1-4 x^{4}}} d x$
w. $\int_{1}^{e} \frac{\ln \sqrt{x}}{x} d x$
k. $\int_{\pi / 6}^{\pi / 2} \frac{1-\sin ^{2} x}{\cos x} d x$
x. $\int_{3}^{6} \frac{y}{3 \sqrt{y^{2}-8}} d y$

1. $\int_{0}^{4 / 3} \sqrt{1+\frac{9}{4} x} d x$
m. $\int_{0}^{1} x^{2} \sqrt{4+5 x^{3}} d x$
2. Find the area between the graph of the given function and the x-axis over the given interval
a. $y=x^{3} \quad ; \quad[-1,3]$
b. $y=\sin x \quad ; \quad\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
c. $y=-x^{2}+4 \quad ; \quad[-4,2]$
d. $y=x^{3}-3 x^{2} \quad ; \quad[1,4]$
e. $y=\frac{1}{4} x^{4}-x^{2} \quad ; \quad[-1,1]$
f. $y=3 x^{4}+4 x^{3} \quad ; \quad[-1,1]$

