CLASS DISCUSSION: 11 OCTOBER 2019

Chain Rule

Stewart exercises:

$1,2,3,4,5$ and 6 Write the composite function in the form $f(g(x))$. [Identify the inner function $u=g(x)$ and the outer function $y=f(u)$.] Then find the derivative $d y / d x$.

1. $y=\sqrt[3]{1+4 x}$
2. $y=\left(2 x^{3}+5\right)^{4}$
3. $y=\tan \pi x$
4. $y=\sin (\cot x)$
5. $y=e^{\sqrt{x}}$
6. $y=\sqrt{2-e^{x}}$

Compute the derivative of each of the following composite functions using the Chain Rule:
7. $\begin{aligned} & F(x)=\left(5 x^{6}+2 x^{3}\right)^{4} \\ & \text { Answer } \\ \text { 8. } & F(x)=\left(1+x+x^{2}\right)^{99}\end{aligned}$
9. $f(x)=\sqrt{5 x+1}$
10. $f(x)=\frac{1}{\sqrt[3]{x^{2}-1}}$
11. $f(\theta)=\cos \left(\theta^{2}\right)$

Answer \downarrow
12. $g(\theta)=\cos ^{2} \theta$
13. $y=x^{2} e^{-3 x}$

Answer \downarrow
14. $f(t)=t \sin \pi t$
22. $y=\left(x+\frac{1}{x}\right)^{5}$
23. $y=e^{\operatorname{tar} \theta}$

Answer \downarrow

15. $f(t)=e^{a t} \sin b t$

Answer 1

16. $g(x)=e^{x^{2}-x}$
17. $f(x)=(2 x-3)^{4}\left(x^{2}+x+1\right)^{5}$

Answer \downarrow

18. $g(x)=\left(x^{2}+1\right)^{3}\left(x^{2}+2\right)^{6}$
19. $h(t)=(t+1)^{2 / 3}\left(2 t^{2}-1\right)^{3}$

Answer \downarrow

20. $F(t)=(3 t-1)^{4}(2 t+1)^{-3}$
21. $y=\sqrt{\frac{x}{x+1}}$
22. $f(z)=e^{z /(z-1)}$
23. $H(r)=\frac{\left(r^{2}-1\right)^{3}}{(2 r+1)^{5}}$
24. $J(\theta)=\tan ^{2}(n \theta)$
25. $s(t)=\sqrt{\frac{1+\sin t}{1+\cos t}}$
26. $r(t)=10^{2 \sqrt{t}}$

$$
\text { Answer } \downarrow
$$

34.

$$
U(y)=\left(\frac{y^{4}+1}{y^{2}+1}\right)^{5}
$$

35. $y=\cos \left(\frac{1-e^{2 x}}{1+e^{2 x}}\right)$
36. $F(t)=\frac{t^{2}}{\sqrt{t^{3}+1}}$

Answer \downarrow
36. $y=x^{2} e^{-1 / x}$
33. $G(x)=4^{C / x}$
37. $y=\cot ^{2}(\sin \theta)$
55.
a. Find an equation of the tangent line to the curve $y=2 /\left(1+e^{-x}\right)$ at the point $(0,1)$.
b. In illustrate part (a) by graphing the curve and the tangent line on the same screen.
56.
a. The curve $y=|x| / \sqrt{2-x^{2}}$ is called a bullet-nose curve. Find an equation of the tangent line to this curve at the point $(1,1)$.
59. Find all points on the graph of the function $f(x)=2 \sin x+\sin ^{2} x$ at which the tangent line is horizontal.

Answer \downarrow
60. At what point on the curve $y=\sqrt{1+2 x}$ is the tangent line perpendicular to the line $6 x+2 y=1 ?$
61. If $F(x)=f(g(x))$, where $f(-2)=8, f^{\prime}(-2)=4, f^{\prime}(5)=3, g(5)=-2$, and $g^{\prime}(5)=6$, find $F^{\prime}(5)$.

Answer \downarrow
62. If $h(x)=\sqrt{4+3 f(x)}$, where $f(1)=7$ and $f^{\prime}(1)=4$, find $h^{\prime}(1)$.
63. A table of values for f, g, f^{\prime}, and g^{\prime} is given.

x	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
1	3	2	4	6
2	1	8	5	7
3	7	2	7	9

a. If $h(x)=f(g(x))$, find $h^{\prime}(1)$.

Answer \downarrow

b. If $H(x)=g(f(x))$, find $H^{\prime}(1)$.

II For each of the following curves, find all critical points (i.e., points for which $\mathrm{dy} / \mathrm{dx}=0$).

1. $y=(x+1)^{5}(2 x-1)^{8}$
2. $y=e^{-3 x}(x+4)^{9}$
3. $y=\frac{(3 x-5)^{5}}{(2 x+1)^{3}}$
4. $y=x+\sin x$
5. $y=13 x+3 \sin 4 x$

It is often better to be in chains than to be free.

- Franz Kafka, The Trial

