DISCUSSION QUESTIONS: 14-21 OCTOBER 2019

 IMPLICIT AND LOGARITHMIC DIFFERENTLATION

 IMPLICIT AND LOGARITHMIC DIFFERENTLATION}

I Let $\mathrm{G}(\mathrm{x})=(2 \mathrm{x}-9)^{44}(3 \mathrm{x}+4)^{15}$. Find all the critical points of G . Classify the critical points using the first derivative test. Sketch.

II For each of the following curves, find all critical points (i.e., points for which $\mathrm{dy} / \mathrm{dx}=0$).

1. $y=(x+1)^{5}(2 x-1)^{8}$
2. $y=(\mathrm{x}+1)^{5} \mathrm{e}^{3 \mathrm{x}}$
3. $y=\frac{(3 x-5)^{5}}{(2 x+1)^{3}}$
4. $y=x+\sin x$
5. $y=13 x+3 \sin 4 x$

III 1. Let $g(x)=x^{5} e^{3 x}$. Find all the critical points of g. Classify the critical points using the first derivative test. Sketch.
2. Using implicit differentiation, find dy/dx for each of the following implicitly defined curves:
(a) $x y+x+y=y \sin x$
(b) $\tan \mathrm{x}+\sec \mathrm{y}=\mathrm{x}+\mathrm{y}+2019$
(c) $\mathrm{xy}^{4}-\tan \mathrm{x}=\mathrm{e}^{\mathrm{y}}+1234$
3. Find $d^{2} y / d x^{2}$ if $x y-2 x=y \sin x$
4. Find an equation of the tangent line to the bifolium

$$
4 x^{4}+8 x^{2} y^{2}-25 x^{2} y+4 y^{4}=0
$$

at the point $\mathrm{P}=(2,1)$.

5. Using implicit differentiation, find dy/dx for each of the following inverse trig functions.
$y=\arcsin x, y=\arctan x, \operatorname{and} y=\operatorname{arcsec} x$.
6. Differentiate each of the following functions:
(a) $y=\arcsin (3 x)$
(b) $y=\arccos (5 x-13)$
(c) $y=(\operatorname{arcsec} x) / x$
(d) $y=\arctan x+3 \arcsin x$
(e) $y=\arctan ((x-1) /(x+1))$
7. Let $\mathrm{y}=\mathrm{u}^{3}+1$ and $\mathrm{u}=5 \arcsin \mathrm{x}$. Compute $\mathrm{dy} / \mathrm{dx}$
8. Let $z=\arctan u$ and $u=e^{x}$. Compute $d z / d x$.
9. (a) Can you find a formula for $\mathrm{d} / \mathrm{dx}(\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x}) \mathrm{h}(\mathrm{x})$)? (Called Leibniz rule.)
(b) Can you extend this result to a product rule for four or more factors?
(c) Using your result from (b), compute $d / d x\left\{5\left(x^{3}\right)(\cos x)(\ln x) e^{x}\right\}$
(d) Find any and all critical points of the function: $y=\left(x^{2}+3\right)(x-5) e^{x}$
10. Using logarithmic differentiation, find dy/dx if:
(a) $y=\frac{x(x-9)^{5} \sqrt{x+5}}{x^{5}+99}$
(b) $\quad y=7(x-9)^{3}\left(x^{3}+x+1\right)^{5}$
(c) $y=\left(\sin ^{3} x\right)\left(\tan ^{5} x\right)(\ln x)^{2}$
(d) $y^{x}=(x+1)^{3 x}$
(e) $y^{\sin x}=(\ln x)^{y}$
11. (a) Let $\mathrm{y}=(\arctan \mathrm{t})^{7}$. Compute dy/dt.
(b) Let $\mathrm{g}(\mathrm{x})=\cos (\ln \mathrm{x})$ Compute $\mathrm{g}^{(100)}(\mathrm{x})$ and $\mathrm{g}^{(101)}(\mathrm{x})$.
(c) Let $\mathrm{x}=(\sinh (4 \mathrm{t}))^{1 / 2}$. Compute $\mathrm{dx} / \mathrm{dt}$.
(d) Let $\mathrm{z}=(\ln (\mathrm{a}+\mathrm{bx}))^{\mathrm{c}}$, where a, b, and c are constants. Compute $\mathrm{dz} / \mathrm{dx}$.
12. Given the implicit curve $\mathrm{y}^{2}=\cos (\mathrm{xy})-3 \mathrm{x}$, find $\frac{d y}{d x}$.
(b) Find equations of the tangent and normal lines to the curve

$$
(y-x)^{2}=2 x+4 \text { at the point } P=(6,2)
$$

13.

[6 points] A curve \mathcal{C} gives y as an implicit function of x. This curve passes through the point $(-2,1)$ and satisfies

$$
\frac{d y}{d x}=\frac{x^{2}-y^{4}}{2 x y^{3}}
$$

a. [1 point] One of the values below is the slope of the curve \mathcal{C} at the point $(-2,1)$. Circle that one value.

Answer: The slope at $(-2,1)$ is

$$
\begin{array}{lllllll}
-\frac{3}{16} & -\frac{1}{4} & -\frac{3}{8} & -\frac{1}{2} & -\frac{5}{8} & -\frac{3}{4} & -\frac{15}{16}
\end{array}
$$

b. [5 points] One of the following graphs is the graph of the curve \mathcal{C}. Which of the graphs i -vi is it? To receive any credit on this question, you must circle your answer next to the word "Answer" below.

IV 1. Given $\mathrm{y}=\tan ^{2}(\pi \mathrm{u} / 8)$ and $\mathrm{u}=1+2 \mathrm{x}^{2}-4 \mathrm{x}^{3}+3$, find dy/dx when $\mathrm{x}=1$.
2. Sketch the curve $y=(2 x-1)^{4}(3 x+1)^{5}$ and locate all zeroes, perform a sign analysis, study limiting behavior and locate all critical points.
3. Sketch the curve $\mathrm{y}=\mathrm{e}^{\mathrm{x}}(\mathrm{x}-1)^{4}$ and locate all zeroes, perform a sign analysis, study limiting behavior and locate all critical points.
4. Show that the derivative of $\ln \mathrm{x}$ is $1 / \mathrm{x}$. (Hint: Let $\mathrm{y}=\ln \mathrm{x}$; then $\mathrm{x}=\mathrm{e}^{\mathrm{y}}$.)
5. Find $d y / d x$ if $y=\ln (\sec x+\tan x)$ and simplify your answer.
6. Find $d x / d t$ if $x(t)=\ln (\ln (t))$.

V Using implicit differentiation, find dy/dx:

1. $y+x=x y+7$
2. $y^{2}=x^{2}+\sin x y$
3. $y \sin \frac{1}{y}=1-x y$

VI 1. Prove the power rule for rational exponents, viz.

$$
(\mathrm{d} / \mathrm{dx}) \mathrm{x}^{\mathrm{p}}=\mathrm{px}^{\mathrm{p}-1} \text { if } p \text { is rational. }
$$

2. Find $d^{2} y / d x^{2}$ if $y^{2}+x y=1$.
3. Consider the curve defined implicitly by: $x^{2}+x y-y^{2}=1$. Verify that the point $P=(2,3)$ lies on this curve. Find the equations of the tangent and normal lines to this curve at the point P.
4. Find equations for the tangent and normal lines to the cissoid of Diocles (from 200 B.C.):

VII Find dy/dx for each of the following:

1. $y=\arcsin (2 x+5)$
2. $y=\arctan \left(\frac{1}{x}\right)$
3. $y=\ln (\operatorname{arcsec} x)$
4. $y=\left(\arcsin \left(x^{2}\right)\right)^{5}$

VIII Using logarithmic differentiation, find dy/dx for each of the following:

1. $y=x(x+1)^{5}(3 x-4)^{11}$
2. $y=\frac{5 x+7}{\sqrt{3 x+5}}$
3. $y=\sqrt{\frac{x(3 x+1)(2 x+5)}{(x-4)(7 x-1)}}$

To most outsiders, modern mathematics is unknown territory. Its borders are protected by dense thickets of technical terms; its landscapes are a mass of indecipherable equations and incomprehensible concepts. Few realize that the world of modern mathematics is rich with vivid images and provocative ideas.

- Ivars Peterson

