DISCUSSION QUESTIONS: 25 SEPTEMBER 2019

SHORTCUTS APPLIED TO CURVE SKETCHING

1) (a) Find the equations of the tangent and normal lines to the curve
$y=\frac{x-4}{x+1}$ at $x=3$
(b) Sketch the curve $y=\frac{x-4}{x+1}$ at $x=3$

Over which interval(s) is the graph rising? falling? Locate any local maxima or minima.
2) Find the equations of the tangent and normal lines to the curve $\mathrm{y}=\sin \mathrm{x}$ at $\mathrm{x}=\pi / 4$.
3) Using appropriate shortcuts, find formulas for the derivatives of $y=\tan x$ and $y=\sec x$.
4) Sketch the curve $y=x(x-1)^{2}$. Over which interval(s) is the graph rising? falling?

Locate any local maxima or minima.
5) Sketch the curve $y=\frac{x^{3}}{1+x^{2}}$. Over which interval(s) is the graph rising? falling?

Locate any local maxima or minima.
6) Sketch the curve $\mathrm{y}=\mathrm{x}^{3}(\mathrm{x}-2)^{2}$. Over which interval(s) is the graph rising? falling?

Locate any local maxima or minima.
7) Sketch the curve $\mathrm{y}=\mathrm{xe}^{\mathrm{x}}$. Over which interval(s) is the graph rising? falling? Locate any local maxima or minima.
8) Sketch the curve $y=\frac{1}{x}+x^{2}$ over the interval ($0, \infty$). Over which interval(s) is the graph rising? falling? Locate any local maxima or minima.

$$
f(x)=r x e^{-q x}
$$

where r and q are constants. Assume that both r and q are greater than 1. The function $f(x)$ passes through the origin and has a local maximum at the point $P=\left(\frac{1}{q}, \frac{r}{q} e^{-1}\right)$, as shown in the graph below:

a. Justify, using the first-derivative test that the point P is a local maximum.
b. What are the x-coordinates of the global maximum and minimum of $f(x)$ on the domain $[0$, 1]? (If $f(x)$ does not have a global maximum on this domain, say "no")
c. What are the x -coordinates of the global maximum and minimum of $f(x)$ on the domain $(-\infty$, ∞)? (If $f(x)$ does not have a global maximum on this domain, say "no global maximum," and similarly if $f(x)$ does not have a global minimum
d. Suppose that $g(x)$ is a function with $g^{\prime}(x)=f(x)$. Find x-values of all local maxima and minima of $g(x)$. Justify that each maximum you find is a maximum, and each minimum is a minimum.

maximum?

minimum?

