DISCUSSION QUESTIONS: 30 SEPTEMBER 2019

SHORTCUTS APPLIED TO CURVE SKETCHING

- 1) What is the "first-derivative test"?
- 2) [Stewart] Find all critical points and classify each:

(a)
$$y = \frac{1}{3}x^3 + \frac{1}{2}x^2 - 12x + 1$$

(b) $F(x) = x^4 - 2x^2 + 1$
(c) $g(x) = x^4 (x - 1)$

(d)
$$L(x) = x^7 - x^5 + 3$$

(e)
$$y = \frac{x}{x^2 + 1}$$

3) (a) Find equations of the *tangent* and *normal lines* to the curve

$$y = \frac{x-4}{x+1} \quad at \ x = 3$$

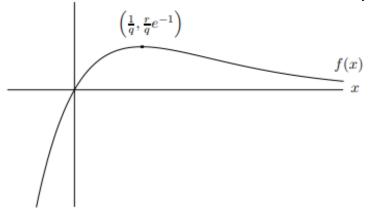
(b) Sketch the curve $y = \frac{x-4}{x+1}$. Over which interval(s) is the graph *rising*? *falling*? Locate any *local maxima* or *minima*.

4) Find the equations of the *tangent* and *normal* lines to the curve

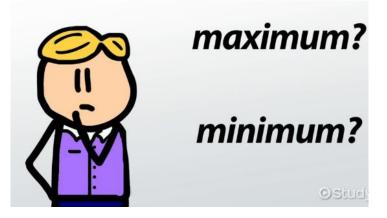
 $y = \sin x$ at $x = \pi/4$.

- 5) Sketch the curve $y = x (x 1)^2$. Over which interval(s) is the graph *rising? falling?* Locate any local maxima or minima.
- 6) Sketch the curve $y = \frac{x^3}{1+x^2}$. Over which interval(s) is the graph *rising? falling?* Locate any local maxima or minima.
- 7) Sketch the curve $y = x^4(x 2)^2$. Over which interval(s) is the graph *rising? falling?* Locate any local maxima or minima.
- 8) Sketch the curve $y = x e^{x}$. Over which interval(s) is the graph rising? *falling*? Locate any local maxima or minima.
- 9) Sketch the curve $y = \frac{1}{x} + x^2$ over the interval $(0, \infty)$. Over which interval(s) is the graph *rising*? *falling*? Locate any local maxima or minima.
- 10) [U. of Michigan] Below is the graph of the function $f(x) = r x e^{-qx}$

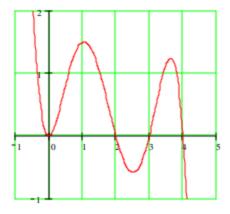
where *r* and *q* are constants. Assume that both *r* and *q* are greater than 1. The function *f*(*x*) passes through the origin and has a local maximum at the point $P = \left(\frac{1}{q}, \frac{r}{q}e^{-1}\right)$, as shown in the graph below:



- **a.** Justify, using the first-derivative test that the point P is a local maximum.
- **b.** What are the *x*-coordinates of the global maximum and minimum of f(x) on the domain [0, 1]? (If f(x) does not have a global maximum on this domain, say "no")
- c. What are the x-coordinates of the global maximum and minimum of f(x) on the domain $(-\infty, \infty)$? (If f(x) does not have a global maximum on this domain, say "no global maximum," and similarly if f(x) does not have a global minimum
- **d.** Suppose that g(x) is a function with g'(x) = f(x). Find *x*-values of all local maxima and minima of g(x). Justify that each maximum you find is a maximum, and each minimum is a minimum.



11) [U. of Michigan] The graph in the figure below is the graph of f'(x) (i.e., the graph of the derivative of f). [Note: all questions refer to f, not f'.]



Graph of the derivative of f

- (a) Determine all values of x for which:
 - (i) f has critical point(s) _____
 - (ii) f has local maximum(s) _____
 - (iii) f has local minimum(s)
- (b) Give the largest interval over which f is increasing
- 12) [Whitman College] For each of the following functions, find and classify all critical points.
 a) y = x² x

b)
$$y = 2 + 3x - x^3$$

c) $y = x^3 - 9x^2 + 24x$

d) $y = x^4 - 2x^2 + 3$

e)
$$y = 3x^4 - 4x^3$$

f)
$$y = \frac{x^2 - 1}{x}$$

g) $y = 3x^2 - \frac{1}{x^2}$

h)
$$y = \cos(2x) - x$$

i)
$$y = \frac{x^3}{x+1}$$

Swift Introduction to the Game of Anti-derivatives

For each of the following functions determine an anti-derivative:

 $\sin x$, 2x, $3x^2$, $\cos x$, x^8 , $\sec^2 x$, $7x^2 + 9x^3 + e$, (sec x tan x), $1 + e^x$