DISCUSSION: 4 SEPTEMBER 2019

limits $\&$ continuity

Fractal tree

I Evaluate each of the following limits or explain why the limit fails to exist.

1. $\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-5 x+6}$
2. $\lim _{x \rightarrow 3} \frac{x^{3}-27}{x-3}$
3. $\lim _{x \rightarrow 1} \frac{x^{4}-1}{x^{2}-1}$
4. $\lim _{x \rightarrow 1} \frac{x+9}{x^{2}-4}$
5. $\lim _{x \rightarrow 1} \frac{x^{4}-1}{x^{3}-1}$
6. $\lim _{x \rightarrow 0} \frac{|x|}{x}$
7. $\lim _{x \rightarrow 16} \frac{\sqrt{x}-4}{x-16}$
8. $\lim _{x \rightarrow 1} \frac{\frac{1}{x}-1}{x-1}$
9. $\lim _{x \rightarrow 4} \sqrt{\frac{x+5}{x+12}} \quad$ 10. $\lim _{x \rightarrow 1} \frac{x^{2}-1}{(x-1)^{3}}$

II State the limit laws, viz.

$$
\begin{aligned}
& \lim c f(x)= \\
& \lim (f(x)+g(x))= \\
& \lim f(x) g(x)= \\
& \lim \frac{f(x)}{g(x)}=
\end{aligned}
$$

State the necessary conditions for which each rule is true.

III Define continuity of a function $\mathrm{y}=\mathrm{f}(\mathrm{x})$ at $\mathrm{x}=\mathrm{a}$. What does it mean for a function to be continuous?

IV (a) For each of the four types of discontinuity (removable, infinite, jump, essential) give several examples.
(b) For the graph below, characterize each of the four discontinuities.

(c) Give an example of an essential discontinuity.

V Consider each of the following functions at the given point on the x -axis. Does the function have a continuous extension at the given point? Explain.

1. $f(x)=\frac{x-2}{x-3}, x=3$
2. $G(x)=\frac{x^{2}-9}{x-3}, x=3$
3. $H(x)=\frac{2 x^{2}-13 x+20}{3 x^{2}-13 x+4}, x=4$
4. $g(x)=\frac{2 x^{2}-13 x+20}{3 x^{2}-13 x+4}, x=1 / 3$

VI For which value of a is the following function continuous everywhere?

$$
f(x)= \begin{cases}x^{2}-1 & \text { for } x<3 \\ 2 a x & \text { for } x \geq 3\end{cases}
$$

VII For which values of a and b is the following function continuous everywhere?

$$
g(x)=\left\{\begin{array}{l}
a x+2 b \text { for } x \leq 0 \\
x^{2}+3 a-b \text { for } 0<x \leq 2 \\
3 x-5 \text { for } x>2
\end{array}\right.
$$

Exercises from Stewart

1. Given that

$$
\lim _{x \rightarrow 2} f(x)=4 \quad \lim _{x \rightarrow 2} g(x)=-2 \quad \lim _{x \rightarrow 2} h(x)=0
$$

find the limits that exist. If the limit does not exist, explain why.
a. $\lim _{x \rightarrow 2}[f(x)+5 g(x)]$
\square
b. $\lim _{x \rightarrow 2}[g(x)]^{3}$
c. $\lim _{x \rightarrow 2} \sqrt{f(x)}$
\rightarrow
d. $\lim _{x \rightarrow 2} \frac{3 f(x)}{g(x)}$
e. $\lim _{x \rightarrow 2} \frac{g(x)}{h(x)}$
f. $\lim _{x \rightarrow 2} \frac{g(x) h(x)}{f(x)}$
2. The graphs of f and g are given. Use them to evaluate each limit, if it exists. If the limit does not exist, explain why.

	y				
			$y=f(x)$		
	-1				
	0	1		x	

a. $\lim _{x \rightarrow 2}[f(x) \div g(x)]$
b. $\lim _{x \rightarrow 0}[f(x)-g(x)]$
c. $\lim _{x \rightarrow-1}[f(x) g(x)]$
d. $\lim _{x \rightarrow 3} \frac{f(x)}{g(x)}$
e. $\lim _{x \rightarrow 2}\left[x^{2} f(x)\right]$
f. $f(-1)+\lim _{x \rightarrow-1} g(x)$
$3,4,5,6,7,8$ and 9 Evaluate the limit and justify each step by indicating the appropriate Limit Law(s).
3. $\lim _{x \rightarrow 3}\left(5 x^{3}-3 x^{2}+x-6\right)$ \square
4. $\lim _{x \rightarrow-1}\left(x^{4}-3 x\right)\left(x^{2}+5 x+3\right)$
5. $\lim _{t \rightarrow-2} \frac{t^{4}-2}{2 t^{2}-3 t+2}$
\rightarrow
6. $\lim _{u \rightarrow-2} \sqrt{u^{4}+3 u+6}$
7. $\lim _{x \rightarrow 8}(1+\sqrt[3]{x})\left(2-6 x^{2}+x^{3}\right)$
8. $\lim _{t \rightarrow 2}\left(\frac{t^{2}-2}{t^{3}-3 t+5}\right)^{2}$
9. $\lim _{x \rightarrow 2} \sqrt{\frac{2 x^{2}+1}{3 x-2}}$
$11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31$ and 32 Evaluate the limit, if it exists.
11. $\lim _{x \rightarrow 5} \frac{x^{2}-6 x+5}{x-5}$
12. $\lim _{x \rightarrow-3} \frac{x^{2}+3 x}{x^{2}-x-12}$
13. $\lim _{x \rightarrow 5} \frac{x^{2}-5 x+6}{x-5}$
\rightarrow
14. $\lim _{x \rightarrow 4} \frac{x^{2}+3 x}{x^{2}-x-12}$
15. $\lim _{t \rightarrow-3} \frac{t^{2}-9}{2 t^{2}+7 t+3}$
16. $\lim _{x \rightarrow-1} \frac{2 x^{2}+3 x+1}{x^{2}-2 x-3}$
17. $\lim _{h \rightarrow 0} \frac{(-5+h)^{2}-25}{h}$
18. $\lim _{h \rightarrow 0} \frac{(2+h)^{3}-8}{h}$
19. $\lim _{x \rightarrow-2} \frac{x+2}{x^{3}+8}$
$\rightarrow=$
20. $\lim _{t \rightarrow 1} \frac{t^{4}-1}{t^{3}-1}$
21. $\lim _{h \rightarrow 0} \frac{\sqrt{9+h}-3}{h}$ \square
22. $\lim _{u \rightarrow 2} \frac{\sqrt{4 u+1}-3}{u-2}$
26. $\lim _{t \rightarrow 0}\left(\frac{1}{t}-\frac{1}{t^{2}+t}\right)$
30. $\lim _{x \rightarrow-4} \frac{\sqrt{x^{2}+9}-5}{x+4}$
23. $\lim _{x \rightarrow 3} \frac{\frac{1}{x}-\frac{1}{3}}{x-3}$
\rightarrow
24. $\lim _{h \rightarrow 0} \frac{(3+h)^{-1}-3^{-1}}{h}$
25. $\lim _{t \rightarrow 0} \frac{\sqrt{1+t}-\sqrt{1-t}}{t}$
27. $\lim _{x \rightarrow 16} \frac{4-\sqrt{x}}{16 x-x^{2}}$
31. $\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h}$
28. $\lim _{x \rightarrow 2} \frac{x^{2}-4 x+4}{x^{4}-3 x^{2}-4}$
29. $\lim _{t \rightarrow 0}\left(\frac{1}{t \sqrt{1+t}}-\frac{1}{t}\right)$
32.
$\lim _{h \rightarrow 0} \frac{\frac{1}{(x+h)^{2}}-\frac{1}{x^{2}}}{h}$
\rightarrow

COURSE HOME PAGE DEPARTMENT HOME PAGE LOYOLA HOME PAGE

