DISCUSSION: 6 SEPTEMBER 2019

Continuity:

Intermediate Value Theorem; Squeeze Theorem

1. Define continuity of a function $\mathrm{y}=\mathrm{f}(\mathrm{x})$ at $\mathrm{x}=\mathrm{a}$. What does it mean for a function to be continuous?
2. (a) For each of the four types of discontinuity (removable, infinite, jump, essential) give several examples.
(b) For the graph below, characterize each of the four discontinuities.

(c) Give an example of an essential discontinuity.
3. What is meant by "one-sided" limit?

For each of the following graphs, identify and compute one-sided limits at points of discontinuity

What is the relationship between one-sided limits and limit? What does this mean in terms of continuity?
4. (Stewart)

The graphs of f and g are given. Use them to evaluate each limit, if it exists. If the limit does not exist, explain why.

a. $\lim _{x \rightarrow 2}[f(x) \div g(x)]$
b. $\lim _{x \rightarrow 0}[f(x)-g(x)]$
c. $\lim _{x \rightarrow-1}[f(x) g(x)]$
d. $\lim _{x \rightarrow 3} \frac{f(x)}{g(x)}$
e. $\lim _{x \rightarrow 2}\left[x^{2} f(x)\right]$
f. $f(-1)+\lim _{x \rightarrow-1} g(x)$
5. Consider each of the following functions at the given point on the x-axis. Does the function have a continuous extension at the given point? Explain.

1. $f(x)=\frac{x-2}{x-3}, x=3$
2. $G(x)=\frac{x^{2}-9}{x-3}, x=3$
3. $H(x)=\frac{2 x^{2}-13 x+20}{3 x^{2}-13 x+4}, x=4$
4. $g(x)=\frac{2 x^{2}-13 x+20}{3 x^{2}-13 x+4}, x=1 / 3$
5. For which value of a is the following function continuous everywhere?

$$
f(x)=\left\{\begin{array}{l}
x^{2}-1 \text { for } x<3 \\
2 a x \text { for } x \geq 3
\end{array}\right.
$$

7. State the Intermediate Value Theorem. Using the IVT, prove that the polynomial $\mathrm{f}(\mathrm{x})=\mathrm{x}^{4}+4 \mathrm{x}^{3}-20 \mathrm{x}+11$ must have a root between $\mathrm{x}=0$ and $\mathrm{x}=$

WHY DID THE CHICKEN CROSS THE ROAD?

THE INTERMEDIATE VALLLE THEOREM.
8. State the Squeeze Theorem (a.k.a. Sandwich Theorem, Pinching Theorem, Two Gendarmes Theorem, Two Policemen and a Drunk Theorem).

9. (a) Is the function $f(x)=\frac{\sin x}{x}$ even or odd or neither?
(b) Using the Sandwich Theorem prove that $\frac{\sin x}{x} \rightarrow 1$ as $x \rightarrow 0$.
(This result is the key to our being able to differentiate the trig functions.)

10. Using the Squeeze Theorem compute each of the following limits:
(a) $\lim _{x \rightarrow 0} x^{8} \sin ^{4}(1 / x)$
(b) $\quad \lim _{x \rightarrow 0} x^{4} \cos (1 / x)$
(c) $\lim _{x \rightarrow \infty} x \sin (1 / x)$
(d) $\lim _{x \rightarrow \infty} \frac{x^{2} \cos (2 x)+\sin ^{3}\left(x^{2017}\right)}{x^{3}+x+5}$
11. Infinite limits: Evaluate each of the following limits or explain why the limit fails to exist.
(a) $\lim _{x \rightarrow \infty} \frac{\sin x}{x}$
(b) $\lim _{x \rightarrow \infty} \frac{x^{4}+5 x^{2}+2019}{\left(2 x^{2}+13\right)^{2}}$
(c) $\lim _{x \rightarrow 1} \frac{x-3}{x^{2}+2 x-4}$
(d) $\lim _{x \rightarrow 1} \frac{x-3}{x^{2}+2 x-4}$
(e) $\lim _{h \rightarrow 4} \frac{x-4}{|4-x|}$
(f) $\lim _{x \rightarrow \infty} \frac{\sqrt{9 x^{2}-3}}{7 x^{2}+2 x-4}$

"I could have clasped the red walls to my bosom as a garment of eternal peace. "Death," I said, "any death but that of the pit!" Fool! might I have not known that into the pit it was the object
of the burning iron to urge me?"

- Edgar Allan Poe, The Pit and the Pendulum

