DISCUSSION: 9 SEPTEMBER 2019
 Continuity:

Intermediate Value Theorem; Squeeze Theorem Trigonometric limits

1. (a) For each of the four types of discontinuity (removable, infinite, jump, essential) give several examples.
(b) For the graph below, characterize each of the four discontinuities.

(c) Give an example of an essential discontinuity.
2. What is meant by "one-sided" limit?

For each of the following graphs, identify and compute one-sided limits at points of discontinuity

What is the relationship between one-sided limits and limit? What does this mean in terms of continuity?
3. Consider each of the following functions at the given point on the x-axis. Does the function have a continuous extension at the given point? Explain.

1. $f(x)=\frac{x-2}{x-3}, x=3$
2. $G(x)=\frac{x^{2}-9}{x-3}, x=3$
3. $H(x)=\frac{2 x^{2}-13 x+20}{3 x^{2}-13 x+4}, x=4$
4. $g(x)=\frac{2 x^{2}-13 x+20}{3 x^{2}-13 x+4}, x=1 / 3$
5. For which value of a is the following function continuous everywhere?

$$
f(x)= \begin{cases}x^{2}-1 & \text { for } x<3 \\ 2 a x & \text { for } x \geq 3\end{cases}
$$

5. State the Intermediate Value Theorem. Using the IVT, prove that the polynomial $\mathrm{f}(\mathrm{x})=\mathrm{x}^{4}+4 \mathrm{x}^{3}-20 \mathrm{x}+11$ must have a root between $\mathrm{x}=0$ and $\mathrm{x}=$

6. Reiew of the Squeeze Theorem (a.k.a. Sandwich Theorem, Pinching Theorem, Two Gendarmes Theorem, Two Policemen and a Drunk Theorem).

7. Using the Squeeze Theorem compute each of the following limits:
(a) $\lim _{x \rightarrow 0} x^{8} \sin ^{4}(1 / x)$
(b) $\quad \lim _{x \rightarrow 0} x^{4} \cos (1 / x)$
(c) $\quad \lim x \sin (1 / x)$
$x \rightarrow \infty$
(d) $\lim _{x \rightarrow \infty} \frac{x^{2} \cos (2 x)+\sin ^{3}\left(x^{2017}\right)}{x^{3}+x+5}$
8. Infinite limits: Evaluate each of the following limits or explain why the limit fails to exist.
(a) $\lim _{x \rightarrow \infty} \frac{\sin x}{x}$
(b) $\lim _{x \rightarrow \infty} \frac{x^{4}+5 x^{2}+2019}{\left(2 x^{2}+13\right)^{2}}$
(c) $\lim _{x \rightarrow 1} \frac{x-3}{x^{2}+2 x-4}$
(d) $\lim _{x \rightarrow 1} \frac{x-3}{x^{2}+2 x-4}$
(e) $\lim _{h \rightarrow 4} \frac{x-4}{|4-x|}$
(f) $\lim _{x \rightarrow \infty} \frac{\sqrt{9 x^{2}-3}}{7 x^{2}+2 x-4}$
9. Trigonometric limits: Evaluate each of the following limits or explain why the limit fails to exist.
10. $\lim _{x \rightarrow 0} \frac{\sin 4 x}{x}$
11. $\lim _{x \rightarrow 0} \frac{\tan 5 x}{x}$
12. $\lim _{x \rightarrow 0} \frac{\sin 2 x}{\sin 8 x}$
13. $\lim _{x \rightarrow \infty} \frac{\sin 13 x}{x}$
14. $\lim _{x \rightarrow 0} \frac{\cos 3 x}{x}$
15. $\lim _{x \rightarrow 0+} x \sin \left(\frac{1}{x}\right)$
16. $\lim _{x \rightarrow 0} \frac{\cos 11 x}{\cos 13 x}$
17. $\lim _{x \rightarrow 0} \frac{\tan ^{2} x}{x^{2}}$
18. $\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x}$
19. $\lim _{x \rightarrow 0+} \frac{|x|}{x}$
20. $\lim _{x \rightarrow 5-} \frac{x(x-5)(x-3)^{2}}{|x-5|}$
21. $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}$
22. $\lim _{x \rightarrow 5} \sqrt{\frac{x-5}{x+1}}$
23. $\lim _{x \rightarrow 0} \frac{\sin (\sin x)}{\sin x}$
24. $\lim _{x \rightarrow 0} x \csc x$
25. $\lim _{x \rightarrow 3-} \frac{(x+4)(x-3)}{|x-3|}$
26. $\lim _{x \rightarrow 0} \cos (1 / x)$
27. $\lim _{x \rightarrow 3-} \sqrt{9-x^{2}}$

COURSE HOME PAGE DEPARTMENT HOME PAGE LOYOLA HOME PAGE

