MATH 161: A COLLECTION OF PRACTICE EXERCISES DRAWN FROM OLD QUIZZES

NOVEMBER 2019

1. Find the area between the two curves: $y=4 x^{2}+10 x+13$ and $y=11-4 x^{2}$. Sketch.
2. Let $F(x)=\sin x+\int_{-3}^{\cos x} \frac{1}{5+t^{3}} d t$. Find $F^{\prime}(x)$.
3. Using the FTC, find the area beneath the curve $f(x)=\frac{x^{6}}{5+3 x^{7}}$ that is above the interval $[0,1]$.
4. Let $\mathrm{C}(\mathrm{t})$ be the temperature, in degrees Fahrenheit, of a warm can of soda t minutes after it was put in a refrigerator. Suppose C $(10)=62$.
a. Assuming C has an inverse, give a practical interpretation of the statement $C^{-1}(45)=40$
b. Give a practical interpretation of the statement. $C^{\prime}(10)=-0.4$
c. Give a practical interpretation of the statement $\int_{0}^{10} C^{\prime}(t) d t=-5$
d. Assuming the statements in parts (a)-(c) are true, determine $\mathrm{C}(0)$.
e. What is the practical meaning of: $\int_{0}^{1} C(t) d t$?
5. Extra Credit: Suppose $\int_{0}^{2 x+1} f(t) d t=x \sqrt{5 x+9}$. Find $f(1)$
6. Evaluate each of the following Riemann integrals. Show your work!
(a) $\int_{-5}^{5} \frac{x^{5}}{1+3 \cos (9 x)} d x$
(b) $\int_{0}^{5} \sqrt{25-x^{2}} d x$
(c) $\quad \int_{-5}^{5}|x-3| d x$
7. Below is the graph of the velocity of Marcel, a sleepwalker. At time $t=0$, Marcel is in his bed and suddenly awakens. (Assume that the units are feet and minutes.)
(a) How far is Marcel from his bed at time $\mathrm{t}=10$?
(b) When is his speed the greatest?
(c) Explain what happens during the time interval $(7,8)$.

8. Below is the graph of the velocity, in feet per second, $0 \leq t \leq 13$, of a frightened skunk as it tries to run away from a German Shepard. From $t=0$ to $t=2$, we have a quarter of a circle; from $t=2$ to $t=$ 8 , we have a semicircle; from $\mathrm{t}=8$ until $\mathrm{t}=13$, we have a straight line segment. [Note that this is the graph of velocity, not distance.]

What is the total distance traveled by the skunk between $\mathrm{t}=0$ and $\mathrm{t}=13$? Give an exact answer!

9. The figure below shows the graph of the velocity, v, of an object (in meters/sec.). If the graph were shifted up 4 units, how would the total distance traveled between $t=0$ and $t=6$ change?

A) It would increase by 4 units. D) It would decrease by 4 units.
B) It would increase by 24 units. E) It would decrease by 24 units.
C) It would remain the same.
10. At time t, in seconds, your velocity v, in meters/sec, is given by $v(t)=9+4 t^{2}$ for $0 \leq t \leq 6$. Which is more accurate?
A) An estimate of the distance traveled during this time using $\Delta t=1$.
B) \quad An estimate of the distance traveled during this time using $\Delta 7$.
11. Two greyhound racing dogs, A and B, start at the same time and travel in the same direction along a straight track. The figure below gives the velocity, v, of each dog as a function of time t. Which dog travels the farthest? Explain!

12. What is the value of the Riemann integral, $\int_{a}^{c} f(x) d x$, if the area of $\mathrm{A}=15$ and the area of $\mathrm{B}=4$?

$\begin{array}{lllll}\text { A) } 5.5 & \text { B) } 22 & \text { C) }-11 & \text { D) } 11 & \text { E) } 19\end{array}$
13. Evaluate the following Riemann integral:

$$
\int_{0}^{\frac{\pi}{3}} \frac{\cos 3 x}{1+(\sin 3 x)^{2}} d x
$$

What is the value of $\int_{a}^{c}|f(x)| d x$ if the area of $\mathrm{A}=9$ and the area of $\mathrm{B}=2$?

A) 3.5
B) 14
C) -7
D) 7
E) 11
14. The velocity and acceleration of an object are given by the graphs shown below, where $\mathrm{v}(0)=0$. . Which graph shows acceleration?

A) The one on the left.
B) The one on the right.
15. A car is moving along a straight road from A to B, starting from A at time $t=0$. Below is the velocity (positive direction is from A to B) plotted against time.

How many kilometers away from A is the car at time $t=9 ?$ Explain!

16. Find the area of the region bounded by the line $y=x$ and the parabola $y=5 x-x^{2}$. Sketch!
17. Find the value of c so that the area enclosed by the parabolas $y=x^{2}-c^{2}$ and $y=x^{2}+c^{2}$ is 576 . Sketch!
18. Consider the area between the two functions shown in figure below. Which of the following graphs (a) through (d) represents this area as a function of x ?

(a)

19. Given that $F(x)=\int_{0}^{x} \sqrt{\frac{1+2 \cos t}{3+4 e^{5 t}}} d t$. Compute $\mathrm{F}^{\prime}(0)$.
20. Consider the area between the two functions shown in the figure below. Which of the following graphs (a)-(d) represents this area as a function of x ? Explain!

(b)

d)

21. What does the following figure represent? Explain briefly.

A) The right-hand Riemann sum for the function f on the interval $0 \leq t \leq 12$ with $\Delta t=$ 3.
B) The right-hand Riemann sum for the function f on the interval $0 \leq t \leq 12$ with $\Delta t=$ 6.
C) The left-hand Riemann sum for the function f on the interval $0 \leq t \leq 12$ with $\Delta t=$ 3.
D) The left-hand Riemann sum for the function f on the interval $0 \leq t \leq 12$ with $\Delta t=$ 6.
22. Using the given graphs, draw rectangles representing each of the following Riemann sums for the function on the interval [0, 12]. Calculate the value of each Riemann sum. (You may leave your answer in non-simplified form if you have no time to perform the addition.)
(a) Left-hand sum with $\Delta t=3$.

(b) Right-hand sum with $\Delta t=3$.

23. Suppose that

$$
\begin{array}{r}
\int_{2}^{7}(3 f(x)- \\
-g(x)) d x
\end{array}
$$

Find $\int_{2}^{9}(f(x)-g(x)) d x$

