MATH 161: PRACTICE PROBLEMS FOR TEST I (REVISED)
 25 SEPTEMBER 2019

1) Using only the limit definition of the derivative, write $g^{\prime}(5)$ if $g(x)=x^{\left(\frac{1-2 x}{1+3 x}\right)}$. Do not attempt to evaluate!
2) (a) Using only the limit definition of the derivative compute the value of $f^{\prime}(1)$ if $f(x)=\frac{x}{x+1}$
(b) Using short cuts compute $f^{\prime}(1)$.
3) Albertine orders a large cup of coffee at Metropolis on Granville. Let $\mathrm{F}(\mathrm{t})$ be the temperature in degrees Fahrenheit of her coffee t minutes after the coffee is placed on her tray.
(a) Explain the meaning of the statement: $\mathrm{F}(9)=167$. (Use complete sentences. Avoid any mathematical terms!)

(b) Explain the meaning of the statement: $\mathrm{F}^{-1}(99)=17.5$
(c) Give the practical interpretation of the statement: $\mathrm{F}^{\prime}(9)=-1.10$. (Use complete sentences. Do not use the words "derivative" or "rate" or any other mathematical term in your explanation.)
(d) What are the units of $\mathrm{F}^{\prime}(9)$?
(e) Using the information given in parts (a) and (c), estimate the temperature of Albertine's coffee seven minutes after she has been handed the coffee.
(f) [EXTRA CREDIT] Explain the meaning of the statement:

$$
\left(F^{-1}\right)^{\prime}(99)=-1
$$

4) For each of the following three sets of axes, exactly one of the following statements (a) - (e) is true. You may use a letter more than once. In the space provided next to each figure, enter the letter of the true statement for that figure. For each graph, note that the x and y scales are not the same.
(a) h is the derivative of f, and f is the derivative of g.
(b) g is the derivative of f, and f is the derivative of h.
(c) g is the derivative of h, and h is the derivative of f.
(d) h is the derivative of g, and g is the derivative of f.
(e) None of (a)-(d) are possible.

True statement \qquad

True statement \qquad

True statement \qquad
5) Using only the limit definition of the derivative, write an explicit expression for the derivative of the function

$$
\mathrm{g}(\mathrm{x})=(\cos \mathrm{x})^{\mathrm{x}} \text { at } \mathrm{x}=3 . \quad \text { Do not try to calculate this derivative. }
$$

6) (a) Find $\lim _{x \rightarrow \infty} f(x)$ if, for all $x>5$,

$$
\frac{4 x-1}{x}<f(x)<\frac{4 x^{2}+3 x}{x^{2}}
$$

Explain! Which theorem are you using?
(b) Show that $\mathrm{y}=\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+5 \mathrm{e}^{\mathrm{x}}+1$ has at least one real root. Explain!

Which theorem are you using?
7) Find an equation of the normal line to the curve

$$
y=g(x)=\frac{x^{2}-1}{x^{2}+1} \text { at } \mathrm{x}=1
$$

You may use short cuts.
8) The graph of a function g is shown below. For each of the following, decide if the limit exists. If it does, find the limit. If it does not, decide also if the "limit" is $\infty,-\infty$, or neither. No justification is necessary for full credit, but show your work for purposes of partial credit.

(a) $\lim _{x \rightarrow 0^{+}} g(x)=$
(b) $\lim _{x \rightarrow 1^{-}} g(x)=$
(c) $\lim _{x \rightarrow 1^{+}} g(x)=$
(d) $\lim _{x \rightarrow 1} g(x)=$
(e)

$$
\lim _{x \rightarrow 2} g(x)=
$$

(f) $\lim _{x \rightarrow 0^{+}} g(x)=$
(g) $\lim _{x \rightarrow 3^{-}} g(x)=$
(h) $\lim _{x \rightarrow 3^{+}} g(x)=$
(i)
$\lim _{x \rightarrow 3} g(x)=$
(j) $\lim _{x \rightarrow 4^{+}} g(x)=$
(k) $\lim _{x \rightarrow 4^{-}} g(x)=$
(l) $\lim _{x \rightarrow 4} g(x)=$
(m) $\lim _{x \rightarrow 5^{-}} g(x)=$
9) For each of the following functions, determine the type of discontinuity at the given point. If it is a removable discontinuity, find continuous extension of the function.
(a) $y=\frac{x^{3}-x^{2}-2 x}{(x-2)(x+5)}$ at $\mathrm{x}=2$
(b) $\quad y=\frac{x^{3}-x^{2}-2 x}{(x-2)(x+5)}$ at $\mathrm{x}=-5$
(c) $y=\cos \frac{3}{x}$ at $x=0$
(d) $y=\frac{|x|}{x}$ at $x=0$
10) Suppose that f and g are differentiable functions satisfying:

$$
f(3)=-2, g(3)=-4, f^{\prime}(3)=3, \text { and } g^{\prime}(3)=-1
$$

(a) Let $\mathrm{H}(\mathrm{x})=(\mathrm{f}(\mathrm{x})+2 \mathrm{~g}(\mathrm{x})+1)(\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})-4)$. Compute $\mathrm{H}^{\prime}(3) \quad$ (Hint: Use short cuts here.)
(b) Let $M(x)=\frac{2 f(x)+3 g(x)}{2-3 g(x)}$. Compute $\mathrm{M}^{\prime}(3)$
11) For each of the following, find any and all critical points. Then, using the first derivative test, classify them (local max, local min, neither).
(a) $y=x^{3}-3 x+1$
(b) $y=3 x^{4}-16 x^{3}+18 x^{2}+1$
12) Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$ be a differentiable function with derivative

$$
f^{\prime}(x)=\frac{e^{x}(x-1)(x-2)^{2}(x-4)^{3}(x-5)^{4}(x-6)^{5}}{1+x^{4}}
$$

(a) Find any and all critical points.
(b) Classify each critical point (local max, local min, neither).
13) Compute each of the following limits. Justify your reasoning.
(a) $\lim _{x \rightarrow \infty} \frac{\left(4 x^{3}+11\right)^{2}(3 x-91)^{3}}{\left(2 x^{2}+5\right)^{4}(2 x+2017)}$
(b) $\lim _{x \rightarrow 3} \frac{\frac{1}{x^{2}}-\frac{1}{9}}{x-3}$
(c) $\lim _{x \rightarrow \infty} \frac{\sin 7 x}{x}$
(d) $\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x}$
14) Using the process of "geometric differentiation," sketch the graph of the derivative of the function $y=G(x)$ whose graph is given below.

FYI: This is the graph of $y=f(x)=9 \sin x \cos 3 x+3 x-\ln x$

15) (a) State carefully the Intermediate Value Theorem.
(b) Using the Intermediate Value Theorem, prove that the polynomial function $g(x)=x^{4}-7 x^{2}+x+5$ has at least one real negative root x.
16) Sketch a continuous, differentiable graph with the following properties:

- local minima at 2 and 4
- global minimum at 2
- local and global maximum at 3
- no other extrema

17) Let $f(x)=x^{4}-a x^{2}$.
(a) Find all possible critical points of f in terms of a.
(b) If $a<0$, how many critical points does f have?
(c) If $a>0$, find the x and y coordinates of all critical points of f.
18) Given $f(x)=x^{6}-3 x^{5}$ on the interval $[-1,4]$.
(a) Find all critical points of f.
(b) Determine on which intervals f is increasing.
(c) Find and classify all local and global extrema of f.
(d) Sketch the graph of f using the above information.
19) Given the function $\mathrm{f}(\mathrm{x})=\mathrm{x} \ln (2 \mathrm{x})-\mathrm{x}$ on the closed interval[1/(2e),e/2], find the global extrema and use this information to sketch the graph. Identify all local and global extrema. Sketch.
20) [University of Michigan] A model for the amount of an antihistamine in the bloodstream after a patient takes a dose of the drug gives the amount, a , as a function of time, t , to be $\mathrm{a}(\mathrm{t})=\mathrm{A}\left(\mathrm{e}^{-\mathrm{t}}-\mathrm{e}^{-\mathrm{kt}}\right)$. In this equation, A is a measure of the dose of antihistamine given to the patient, and k is a transfer rate between the gastrointestinal tract and the bloodstream. A and k are positive constants, and for pharmaceuticals such as antihistamine, $\mathrm{k}>1$.
(a) Find the location $\mathrm{t}=\mathrm{T}_{\mathrm{m}}$ of the non-zero critical point of $\mathrm{a}(\mathrm{t})$.
(b) Explain why $t=T_{m}$ is a global maximum of $a(t)$ by referring to the expression for $a(t)$ or
21). The derivative of a continuous function g is given by

$$
g^{\prime}(x)=\frac{e^{-5 x}(x+2)(x-3)^{2}\left(x^{4}+3\right)(x-9)}{(x-5)^{1 / 3}}
$$

Determine all critical points of g , and classify each as a local max, local min, or neither. Carefully explain your reasoning for each classification.
22) Using an appropriate tangent line approximation, estimate the value of each of the following quantities:
(a) $(1.00013)^{1 / 9}$
(b) $(0.99999)^{5}$
(c) $e^{0.0007}$
(d) $48.993^{1 / 2}$
23) Given $f(x)=x^{4}-4 x^{3}-8 x^{2}+1$ on the interval $[-5,5]$.
(a) Find all critical points of f.
(b) Determine on which intervals f is increasing.
(c) Using the information obtained above, sketch the graph of $y=f(x)$.
24) Given $f(x)=x(x-2)^{4}$ on the real line.
(a) Find all critical points of f.
(b) Determine on which intervals f is increasing.
(c) Sketch the graph of f using the above information.
25) Given $H(x)=x+2 \sin x$ on the interval $[0,4 \pi]$.
(a) Find all critical points of H.
(b) Determine on which intervals H is increasing.
26) Given $G(x)=x^{2} /\left(x^{2}+3\right)$ on the real line.
(a) Find all critical points of G.
(b) Determine on which intervals G is increasing.
(c) Sketch the graph of G using the above information.
27) For each of the following functions, determine where the tangent line is horizontal. (The x coordinates of these critical points are sufficient.)

Here, since we haven't yet studied, the Chain Rule, you may need to be given formulae for differentiating $\mathrm{y}=(\mathrm{ax}+\mathrm{b})^{\mathrm{n}}$ and $\mathrm{y}=\mathrm{e}^{\mathrm{cx}}$.
(a) $y=(3 x-1)^{8}(2 x+1)^{13}$
(b) $y=\frac{(4 x+3)^{31}}{(x-2)^{15}}$
(c) $y=(x+1)^{4} e^{3 x}$
28) For each of the following curves, determine all local extrema. $y=x e^{2 x}$
(a) $y=x^{3} / 3-x^{2} / 2-2 x+1$
(b) $\mathrm{y}=\mathrm{x}+\sin \mathrm{x}$ on the interval $[-2 \pi / 3,2 \pi / 3]$
(c) $y=x(1-x)^{2}$
(d) $y=x^{2}\left(x^{2}-2\right)$
29) For which value or values of the constant k will the curve

$$
y=x^{3}+k x^{2}+3 x-4
$$

have exactly one horizontal tangent?
30) Sketch the graph of the function $g(x)=x^{2}(x-1)^{2}$ on the interval [0, 2]. Locate any (and all) local and global extrema.
31) Suppose that the derivative of the function
$y=f(x)$ is $y^{\prime}=(x-1)^{2}(x-2)$.
Find and classify all local extrema.
32) Suppose that the derivative of the function $y=g(x)$ is

$$
y^{\prime}=x^{2}(x-2)^{3}(x+3)
$$

Find and classify all local extrema.
33) Find the values of constants a, b, and c so that the graph of

$$
\mathrm{y}=\left(\mathrm{x}^{2}+\mathrm{a}\right) /(\mathrm{bx}+\mathrm{c}) \text { has a local minimum at } \mathrm{x}=3 \text { and a local maximum at }(-1,-2) .
$$

34) The quantity, $Q \mathrm{mg}$, of nicotine in the body t minutes after a cigarette is smoked is given by Q $=g(t)$.
(a) Using a complete sentence, interpret the statement $\mathrm{g}(20)=0.36$ without using any mathematical terminology.
(b) What are the units of dg/dt?
(c) Using a complete sentence, interpret the statement $\mathrm{g}^{\prime}(20)=-0.002$ without using any mathematical terminology.
(d) [1 pt] Using the information that you obtained above, estimate g(23). (As usual, show your work!)

35) A scientist is growing a very large quantity of mold. Initially, the mass of mold grows exponentially, but after many hours, the mass stabilizes at 24 kilograms.
Suppose that t hours after the scientist begins, the mass of mold, in kilograms, can be modeled by the function M defined by the equation
$M(t)= \begin{cases}0.41 e^{0.72 t} & \text { if } 0 \leq t \leq 5 \\ \frac{2 t^{3}}{a t^{b}+c} & \text { if } t>5 .\end{cases}$
a. Find the value of k between 0 and 5 so that $\mathrm{M}(\mathrm{k})=1$. Then interpret the equation $\mathrm{M}(\mathrm{k})=1$ in the context of this problem. Use a complete sentence and include units.
b. Assuming that M is a continuous function of t, determine $\lim _{x \rightarrow \infty} M(t)$ and the values of a, b, and c.
36) Find $\lim _{x \rightarrow 0} \sin \left(\frac{1}{\ln |x|}\right)$

DERIVATIVE RULES

$$
\begin{array}{lll}
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} & \frac{d}{d x}(\sin x)=\cos x & \frac{d}{d x}(\cos x)=-\sin x \\
\frac{d}{d x}\left(a^{x}\right)=\ln a \cdot a^{x} & \frac{d}{d x}(\tan x)=\sec ^{2} x & \frac{d}{d x}(\cot x)=-\csc ^{2} x \\
\frac{d}{d x}(f(x) \cdot g(x))=f(x) \cdot g^{\prime}(x)+g(x) \cdot f^{\prime}(x) & \frac{d}{d x}(\sec x)=\sec x \tan x & \frac{d}{d x}(\csc x)=-\csc x \cot x \\
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) \cdot f^{\prime}(x)-f(x) \cdot g^{\prime}(x)}{(g(x))^{2}} & \frac{d}{d x}(\arcsin x)=\frac{1}{\sqrt{1-x^{2}}} & \frac{d}{d x}(\arctan x)=\frac{1}{1+x^{2}} \\
\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x) & \frac{d}{d x}(\operatorname{arcsec} x)=\frac{1}{x \sqrt{x^{2}-1}} &
\end{array}
$$

Ludwig Wittgenstein

