FRIDAYTHE 13 ${ }^{\text {TH }}$

SEPTEMBER 2019

1. [8 pts] Give the type of discontinuity for each function below at the given point.

(b) At $x=2$

(c) At $x=2$

answer: infinite
answer: removable

answer: jump
(d) At $x=1$
answer: essential

2. [10 pts] Consider the functions $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ given by the formula and graph below.

(a) At which of the following values of x is the function $\mathrm{g}(\mathrm{x})$ not continuous? Circle the correct answer(s).

$$
\begin{array}{lllll}
x=-3 & x=-1 & x=0 & x=2 & x=3.5
\end{array}
$$

Note that $\mathrm{g}(\mathrm{x})$ is linear on each of the intervals $(-4,-2),(1,2)$ and $(2,3)$. All your answers below should be exact. If any of the quantities do not exist, write DNE.
(b) Find $\lim _{x \rightarrow 2}(2 f(x)+g(x))$

Solution: $\lim _{x \rightarrow 2}(2 f(x)+g(x))=2 \lim _{x \rightarrow 2} f(x)+\lim _{x \rightarrow 2} g(x)=2(9)+(-2.5)=$ 15.5
(c) Find $\lim _{x \rightarrow \infty} \frac{f(2 x)}{x^{3}}$

Solution: Since $x>1, \frac{f(2 x)}{x^{3}}=\frac{(2 x)^{3}+1}{x^{3}}=\frac{8 x^{3}+1}{x^{3}} \rightarrow \mathbf{8}$ as $x \rightarrow \infty$.
(d) Find $\lim _{x \rightarrow \infty} g\left(x^{2} e^{-x}+3\right)$

Solution: Begin by observing that $x^{2} e^{-x}=\frac{x^{2}}{e^{x}} \rightarrow 0$ as $x \rightarrow \infty$. Furthermore, $x^{2} e^{-x}>$ 0 for all x.
Thus as $x \rightarrow \infty, x^{2} e^{-x}+3 \rightarrow 3^{+}$.
And so, $\lim _{x \rightarrow \infty} g\left(x^{2} e^{-x}+3\right)=\lim _{x \rightarrow 3^{+}} g(3)=\mathbf{1}$
(e) For which value(s) of p does $\lim _{x \rightarrow p+} g(x)=1$

Solution: Looking at the graph of $\mathrm{g}(\mathrm{x})$, we find that $\mathbf{p}=\mathbf{- 3 . 5}$, and $\mathbf{p}=\mathbf{3}$ are solutions.
3. [6 pts] Using the IVT explain why the function $\mathrm{f}(\mathrm{x})=\mathrm{x}+3-2 \sin \mathrm{x}$ must have at least one real root.

Solution: Note that $f(0)=3>0$ and $f(-\pi)=-\pi+3-2 \sin (-\pi)=3-\pi<0$. Also note that f is continuous on the interval $[-\pi, 0]$ since f is a sum of continuous functions. Since $f(-\pi)<0<f(0)$, the IVT guarantees the existence of a root of the equation
$G(x)=0$ in the interval $[-\pi, 0]$.
4. [6 pts] Compute each of the following limits. As usual, show your work.
(a) Find $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin x}{x}$

(b) Find $\lim _{x \rightarrow 0} \sqrt{\frac{\sin 9 x}{x}}$

Solution: Using the limit theorems as well as continuity of the square root function:

$$
\lim _{x \rightarrow 0} \sqrt{\frac{\sin 9 x}{x}}=\sqrt{\lim _{x \rightarrow 0} \frac{\sin 9 x}{x}}=\sqrt{\lim _{x \rightarrow 0} \frac{\sin 9 x}{x}}=\sqrt{9 \lim _{x \rightarrow 0} \frac{\sin 9 x}{9 x}}=\sqrt{9(1)}=3
$$

(c) Find $\lim _{x \rightarrow 0} \frac{\tan (21 x)}{x \cos (3 x)}$

Solution:

$\lim _{x \rightarrow 0} \frac{\tan (21 x)}{x \cos (3 x)}=\lim _{x \rightarrow 0} \frac{\sin (21 x)}{x \cos (3 x) \cos (21 x)}$

$$
=\left(\lim _{x \rightarrow 0} \frac{1}{\cos (3 x) \cos (21 x)}\right)\left(\lim _{x \rightarrow 0} \frac{\sin (21 x)}{x}\right)=\frac{1}{(1)(1)}(21)=21
$$

5. Consider the rational function F defined by $F(x)=\frac{2 x^{3}+x^{2}-3 x}{2 x^{2}-5 x-12}$
(a) [2 pts] Where is \boldsymbol{F} undefined? (Hint: Your answer should consist of two x values.)

Solution: Begin by factoring: $\mathrm{F}(\mathrm{x})=\frac{\mathrm{x}(2 \mathrm{x}+3)(\mathrm{x}-1)}{(2 \mathrm{x}+3)(\mathrm{x}-4)}$
Now F is undefined when its denominator is 0 :
This occurs at $\boldsymbol{x}=-3 / 2$ and at $\boldsymbol{x}=4$.
(b) [4 pts] At which of the two points of discontinuity does \boldsymbol{F} have a removable discontinuity?

How would you define F at the removable discontinuity, $\mathrm{x}=\mathrm{p}$, to obtain a continuous function at $\mathrm{x}=\mathrm{p}$?

Solution: The removable discontinuity occurs at $\mathrm{p}=-3 / 2$.
Since $F(x)=\frac{x(2 x+3)(x-1)}{(2 x+3)(x-4)}$, it follows that when $x \neq-\frac{3}{2}$,
$\mathrm{F}(\mathrm{x})=\frac{\mathrm{x}(\mathrm{x}-1)}{\mathrm{x}-4} \rightarrow \frac{-\frac{3}{2}\left(-\frac{3}{2}-1\right)}{-\frac{3}{2}-4}=-\frac{15}{22}$ as $\mathrm{x} \rightarrow-\frac{3}{2}$.
So, since this limit exists, the function has a continuous extension at $\mathbf{x}=\mathbf{- 3 / 2}$.
In other words, $x=-3 / 2$ is a removable discontinuity.
Furthermore, we should assign the value $\mathbf{- 1 5 / 2 2}$ to $F(-3 / 2)$.

