

FRIDAY THE 13[™]

SEPTEMBER 2019

- **1.** [8 pts] Give the **type of discontinuity** for each function below at the given point.
 - (a) At x = -1

answer: infinite

(b) At x = 2

(c) At x = 2

answer: removable

answer: jump

2. [10 pts] Consider the functions f(x) and g(x) given by the formula and graph below.

(a) At which of the following values of x is the function g(x) *not* continuous? *Circle* the correct answer(s).

x = -3	x = -1	x = 0	x = 2	x = 3.5
--------	--------	-------	-------	---------

Note that g(x) is linear on each of the intervals (-4, -2), (1, 2) and (2, 3). All your answers below should be *exact*. *If any of the quantities do not exist, write DNE*.

(b) Find
$$\lim_{x \to 2} (2f(x) + g(x))$$

Solution:
$$\lim_{x \to 2} (2f(x) + g(x)) = 2 \lim_{x \to 2} f(x) + \lim_{x \to 2} g(x) = 2(9) + (-2.5) =$$

15.5

(c) Find
$$\lim_{x \to \infty} \frac{f(2x)}{x^3}$$

Solution: Since $x > 1$, $\frac{f(2x)}{x^3} = \frac{(2x)^3 + 1}{x^3} = \frac{8x^3 + 1}{x^3} \to 8$ as $x \to \infty$.

(d) Find $\lim_{x \to \infty} g(x^2 e^{-x} + 3)$

Solution: Begin by observing that $x^2 e^{-x} = \frac{x^2}{e^x} \to 0$ as $x \to \infty$. Furthermore, $x^2 e^{-x} > 0$ for all x. Thus as $x \to \infty$, $x^2 e^{-x} + 3 \to 3^+$.

And so, $\lim_{x \to \infty} g(x^2 e^{-x} + 3) = \lim_{x \to 3^+} g(3) = 1$

(e) For which value(s) of p does $\lim_{x \to n^+} g(x) = 1$

Solution: Looking at the graph of g(x), we find that p = -3.5, and p = 3 are solutions.

3. [6 pts] Using the IVT explain why the function $f(x) = x + 3 - 2 \sin x$ must have at least one real root.

Solution: Note that f(0) = 3 > 0 and $f(-\pi) = -\pi + 3 - 2 \sin(-\pi) = 3 - \pi < 0$. Also note that f is continuous on the interval $[-\pi, 0]$ since f is a sum of continuous functions. Since $f(-\pi) < 0 < f(0)$, the IVT guarantees the existence of a root of the equation G(x) = 0 in the interval $[-\pi, 0]$.

- 4. [6 pts] Compute each of the following limits. As usual, show your work.
 - (a) Find $\lim_{x \to \frac{\pi}{2}} \frac{\sin x}{x}$

Solution: Since $\lim_{x \to \pi/2} x \neq 0$ we can use the limit $\lim_{x \to \frac{\pi}{2}} \frac{\sin x}{x} = \frac{\lim_{x \to \pi/2} \sin x}{\lim_{x \to \pi/2} x} = \frac{1}{\left(\frac{\pi}{2}\right)} = \frac{2}{\pi}$ (b) Find $\lim_{x \to 0} \sqrt{\frac{\sin 9x}{x}}$

Solution: Using the limit theorems as well as continuity of the square root function: $\lim_{x \to 0} \sqrt{\frac{\sin 9x}{x}} = \sqrt{\lim_{x \to 0} \frac{\sin 9x}{x}} = \sqrt{\lim_{x \to 0} \frac{\sin 9x}{x}} = \sqrt{9 \lim_{x \to 0} \frac{\sin 9x}{9x}} = \sqrt{9(1)} = 3$

(c) Find
$$\lim_{x \to 0} \frac{\tan(21x)}{x\cos(3x)}$$

Solution:

$$\lim_{x \to 0} \frac{\tan(21x)}{x\cos(3x)} = \lim_{x \to 0} \frac{\sin(21x)}{x\cos(3x)\cos(21x)}$$
$$= \left(\lim_{x \to 0} \frac{1}{\cos(3x)\cos(21x)}\right) \left(\lim_{x \to 0} \frac{\sin(21x)}{x}\right) = \frac{1}{(1)(1)}(21) = 21$$

5. Consider the rational function F defined by $F(x) = \frac{2x^3 + x^2 - 3x}{2x^2 - 5x - 12}$

(a) [2 pts] Where is **F** undefined? (Hint: Your answer should consist of two x values.)

Solution: Begin by factoring: $F(x) = \frac{x(2x+3)(x-1)}{(2x+3)(x-4)}$

Now F is undefined when its denominator is 0:

This occurs at x = -3/2 and at x = 4.

(b) [4 *pts*] At which of the two points of discontinuity does \mathbf{F} have a removable discontinuity? How would you define \mathbf{F} at the removable discontinuity, x = p, to obtain a continuous function at x = p?

Solution: The removable discontinuity occurs at p = -3/2.

Since $F(x) = \frac{x(2x+3)(x-1)}{(2x+3)(x-4)}$, it follows that when $x \neq -\frac{3}{2}$,

$$F(x) = \frac{x(x-1)}{x-4} \to \frac{-\frac{3}{2}(-\frac{3}{2}-1)}{-\frac{3}{2}-4} = -\frac{15}{22} \text{ as } x \to -\frac{3}{2}.$$

So, since this limit exists, the function has a continuous extension at x = -3/2.

In other words, x = -3/2 is a **removable discontinuity**.

Furthermore, we should assign the value -15/22 to F(-3/2).

