1. [4 pts each] Find an anti-derivative of each of the following functions:
(a) $\frac{2+x^{7}}{x^{9}}$

Solution: $\frac{2+x^{7}}{x^{9}}=2 x^{-9}+x^{-2}$
An excellent first guess might be $x^{-8}+x^{-1}$
Correcting for constants the answer is $-\frac{1}{4} x^{-8}-x^{-1}$
(b) $3 e^{x}+4 \sec ^{2} x+\pi$

Solution: A good first guess might be $e^{x}+\tan x+\pi x$.
Correcting for multiplicative constants, the answer is $3 e^{x}+4 \tan x+\pi x$
(c) $(\cos x)(\tan x)$ Hint: try to rewrite this function before seeking an anti-derivative

Solution: First note that $\cos x \tan x=\cos x \frac{\sin x}{\cos x}=\sin x$
Thus an antiderivative that we seek is $-\boldsymbol{\operatorname { c o s }} \boldsymbol{x}$
2. [4 pts each] Use the chain rule compute the derivative of each of the following functions. You need not simplify. (Remember: Parentheses are important if not essential!)
(a) $e^{1+x^{3}}$

Solution: Using the chain rule (shortcut):

$$
\frac{d}{d x} e^{1+x^{3}}=e^{1+x^{3}} \frac{d}{d x}\left(1+x^{3}\right)=3 x^{2} e^{1+x^{3}}
$$

(b) $\tan (\sin x)$

Solution:

Using the chain rule (shortcut):

$$
\frac{d}{d x} \tan (\sin x)=\sec ^{2}(\sin x) \frac{d}{d x}(\sin x)=(\cos x) \sec ^{2}(\sin x)
$$

(c) $\quad\left(1+\mathrm{x}+x^{3}\right)^{2019}$

Solution: Using the general power rule,

$$
\begin{gathered}
\frac{d}{d x}\left(1+\mathrm{x}+x^{3}\right)^{2019}=2019\left(1+\mathrm{x}+x^{3}\right)^{2018} \frac{d}{d x}\left(1+\mathrm{x}+x^{3}\right)= \\
2019\left(1+\mathrm{x}+x^{3}\right)^{2018}\left(1+3 x^{2}\right)=2019\left(1+3 x^{2}\right)\left(1+\mathrm{x}+x^{3}\right)^{2018}
\end{gathered}
$$

3. [1 pt] Given the graphs of the functions $f(x)$ and $g(x)$ in figures 3.7 and 3.8 , which of the following (a) - (d) is a graph of $f \circ g(x)$? (You need not explain how you chose your answer.)

Solution: $\quad C$ is the correct choice

Here is one of many reasons:
Using the chain rule, $(f(g(x)))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)$, we see $f(g(x))$ has a horizontal tangent whenever $g^{\prime}(x)=0$ or $f^{\prime}(g(x))=0$. Now, $f^{\prime}(g(x))=0$ for $1<g(x)<2$ and this approximately corresponds to $1.7<x<2.5$.
4. [8 pts] Determine concavity and inflection points (if any) of the function

$$
f(x)=x^{4}-4 x^{3}+2019
$$

Express your answers in interval form. You need not graph the curve!

Solution: The solution requires that we find the second derivative of f and then perform a sign analysis on it. Towards this end:

$$
\begin{gathered}
f^{\prime}(x)=4 x^{3}-12 x^{2} \\
f^{\prime \prime}(x)=12 x^{2}-24 x=12 x(x-2)
\end{gathered}
$$

In performing a sign-analysis of $f^{\prime \prime}$ we note that the transition points are $\mathrm{x}=0$ and $\mathrm{x}=2$.
Moreover, $f^{\prime \prime}>0$ on $(-\infty, 0)$ and on $(2, \infty)$. Also, $f^{\prime \prime}<0$ on $(0,2)$.
Thus f is concave up on $(-\infty, 0)$ and on $(2, \infty)$; f is concave down on $(0,2)$.
So there are 2 points of inflection: at $\mathbf{x}=0$ and at $\mathbf{x}=2$.
5. [4 pts each] Consider the piecewise linear function $f(x)$ graphed below:

For each function $g(x)$, find the value of $g^{\prime}(3)$.
(a) $g(x)=\sin \left(\left(f(x)^{3}\right)\right)$ (Here you need to use the chain rule twice.)

Solution: Using the chain rule:

$$
\begin{aligned}
& g(x)=\frac{d}{d x} \sin \left(\left(f(x)^{3}\right)\right)=\cos \left(\left(f(x)^{3}\right)\right) \frac{d}{d x}\left(f(x)^{3}\right)= \\
& \cos \left(\left(f(x)^{3}\right)\right) \frac{d}{d x}\left(f(x)^{3}\right)=\cos \left(\left(f(x)^{3}\right)\right) 3(\mathrm{f}(\mathrm{x}))^{2} f^{\prime}(x)
\end{aligned}
$$

Now: Since the slope of the curve at $x=3$ is $\frac{6-0}{4-10}=-1$, the equation of the curve in the vicinity of $x=3$ is

$$
f(x)=-1(x)+10
$$

So $f(3)=7$ and $f^{\prime}(3)=-1$.

Hence $g^{\prime}(3)=\cos \left(\left(f(3)^{3}\right)\right) 3(f(3))^{2} f^{\prime}(3)=$

$$
\cos \left(7^{3}\right) 3(7)^{2}(-1)=-147 \cos \left(7^{3}\right) \cong \mathbf{1 2 4 . 0 4}
$$

(b) $g(x)=\frac{f\left(x^{2}\right)}{x} \quad$ (Here you must use the quotient rule followed by the chain rule.)

Solution: Using the quotient rule,

$$
g^{\prime}(x)=\frac{x \frac{d}{d x} f\left(x^{2}\right)-f\left(x^{2}\right) \frac{d}{d x}(x)}{x^{2}}
$$

Invoking the chain rule to compute $\frac{d}{d x} f\left(x^{2}\right)$, we find that

$$
g^{\prime}(x)=\frac{x\left(f^{\prime}\left(x^{2}\right)\right) 2 x-f\left(x^{2}\right)}{x^{2}}
$$

And so

$$
g^{\prime}(3)=\frac{3\left(f^{\prime}(9)\right) 2(3)-f(9)}{9}
$$

Since $f(9)=-3$ and $f^{\prime}(9)=-3$, we have:

$$
g^{\prime}(3)=\frac{3(-3) 2(3)-(-3)}{9}=-\frac{17}{3} \cong-5.67
$$

DERIVATIVE RULES

$$
\begin{array}{lll}
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} & \frac{d}{d x}(\sin x)=\cos x & \frac{d}{d x}(\cos x)=-\sin x \\
\frac{d}{d x}\left(a^{x}\right)=\ln a \cdot a^{x} & \frac{d}{d x}(\tan x)=\sec ^{2} x & \frac{d}{d x}(\cot x)=-\csc ^{2} x \\
\frac{d}{d x}(f(x) \cdot g(x))=f(x) \cdot g^{\prime}(x)+g(x) \cdot f^{\prime}(x) & \frac{d}{d x}(\sec x)=\sec x \tan x & \frac{d}{d x}(\csc x)=-\csc x \cot \\
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) \cdot f^{\prime}(x)-f(x) \cdot g^{\prime}(x)}{(g(x))^{2}} & \frac{d}{d x}(\arcsin x)=\frac{1}{\sqrt{1-x^{2}}} & \frac{d}{d x}(\arctan x)=\frac{1}{1+x^{2}} \\
\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x) & \frac{d}{d x}(\operatorname{arcsec} x)=\frac{1}{x \sqrt{x^{2}-1}} & \\
\frac{d}{d x}(\ln x)=\frac{1}{x} & \frac{d}{d x}(\sinh x)=\cosh x & \frac{d}{d x}(\cosh x)=\sinh x
\end{array}
$$

O dear Ophelia!
I am ill at these numbers:
I have not art to reckon my groans.

- HAMLET (Act II, Sc. 2)

