Math 201      Class Discussion:  Mappings, continued
     
21 November 2019

I  (Injections, Surjections, and Bijections)  Which of the following functions are injective, surjective, and bijective on their respective domains.  Take the domains of the functions as those whose values of x for which the function is well-defined.
[image: ]
 II   Let X, Y, Z be non-empty sets.  Assume that F: XY and G: YZ  are (well-defined) mappings.   For each of the following statements give a proof or counterexample.
(a) If  F and G are injective, then GF is injective.
(b) [bookmark: _GoBack]If F and G are surjective, then GF is surjective.
(c) If F and G are bijective, then GF is bijective.
(d) If GF is injective, then G is injective.
(e) If GF is injective, then F is injective.
(f) If GF is surjective, then F is surjective.
(g) If GF is surjective, then G is surjective.
III   Let f: XY be a function.  When does f possess an inverse?
For each of the following, decide if an inverse exists.  If yes, find it.
(a)   f: NZ    defined by f(j) = -j
(b)    f: R R    defined by f(x) = x5
(c)   g: R (0,   defined by g(x) = ex  
(d)    h: Z  Z    defined by h(j) = j + 13
(e)   f: (0,    (0,       defined by f(x) = 1/x
(f)   G:[0,    [0,       defined by f(x) = x2

IV   Find a bijection from 
     (i) R to R;    (ii)  N to Z   (iii) Z to N ; (iv) [0, 5] to [7, 17]; (v)  (0, 1] to R;   N to Q (0, 1)

V  Show that a mapping G: X Y may also be regarded as a mapping from P(X) to P(Y).

VI   What does it mean to say that two sets have the same cardinality?   What does it mean to say that a set is countably infinite?
 VII   Show that each of the following sets is countable:
(a)  The set of non-negative integers.
(b)     The set of integers greater than or equal to 13.
(c)     Z
(d)    The set of positive even integers.
(e)     The set of even integers.
(f)     The set of odd integers.
(g)    The set of rational numbers strictly between 0 and 1.
VIII  (a)   Show that a subset of a countable set is either finite or countable.
(b)   Show that if A and B are disjoint countable sets, then so is the union of A and B.  What if A and B are not disjoint?
(c)  Show that if A and B are countable sets, then so is the Cartesian product of A and B.
(d)   Prove that a countable union of countable sets is countably infinite.
(e)   Prove that the set of rational numbers strictly between 0 and 1 is countable.
(f)   Demonstrate that Q is countable.
IX   Show that if S is a collection of sets, then cardinality is an equivalence relation on S.
X   Using Cantor’s diagonal argument, prove that R is not countable.
 [image: Résultats de recherche d'images pour « comic georg cantor uncountable madness »]
IX   (a)   Let X be a set.  Recall the definition of the power set, P (X), of X.  
Show that the power set of a finite set is finite.  In such a case, describe the relationship between |X| and | P (X)|.
(b) Let X = {a, b, c, d} and let F: X → P (X) be defined by:
F(a) = {a, c, d}, F(b) = {a, d}, F(c) = φ, F(d) = {d}
Find D* = 
(c)   Let X = Z+ and let G: X → P(X) be defined by:
G(a) = {all prime numbers, p, such that a ≤ p ≤ 2a}
Find D* = 
(d)   Let X = Q and let H: X → P (X) be defined by:
 {all prime numbers, p, such that z ≤ p ≤ 2z}
Find D* = 
(e) Let X = R and let V: X → P (X) be defined by:
 
Is V well-defined?   If so, find D* = 
(f)  Prove Cantor’s Theorem:   X and P(X) are not of the same cardinality.
Highly recommended:  MIT lecture notes on cardinality, 24.118 (paradox and infinity)  
[image: GeorgCantor]
Georg Ferdinand Ludwig Cantor (1845 – 1918) is best known for
his discovery of transfinite numbers and the creation of Set Theory

Lenore nodded. ‘Gramma really likes antinomies. I think this guy here (looking down at the drawing on the back of the label) ‘is the barber who shaves all and only those who do not shave themselves’.
- David Foster Wallace, The Broom of the System
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