## Math 201 Class Discussion: Mappings, continued

## 21 November 2019

I (Injections, Surjections, and Bijections) Which of the following functions are injective, surjective, and bijective on their respective domains. Take the domains of the functions as those whose values of x for which the function is well-defined.
a) $\quad f(x)=x^{3}-2 x+1$
b) $\quad f(x)=\frac{x+1}{x-1}$
c) $\quad f(x)= \begin{cases}x^{2} & x \leq 0 \\ x+1 & x>0\end{cases}$
d) $\quad f(x)=\frac{1}{x^{2}+1}$

II Let $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ be non-empty sets. Assume that $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{G}: \mathrm{Y} \rightarrow \mathrm{Z}$ are (well-defined) mappings. For each of the following statements give a proof or counterexample.
(a) If F and G are injective, then $\mathrm{G} \circ \mathrm{F}$ is injective.
(b) If F and G are surjective, then GoF is surjective.
(c) If F and G are bijective, then GoF is bijective.
(d) If $\mathrm{G} \circ \mathrm{F}$ is injective, then G is injective.
(e) If GoF is injective, then F is injective.
(f) If GoF is surjective, then F is surjective.
(g) If GoF is surjective, then G is surjective.

III Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function. When does $f$ possess an inverse?
For each of the following, decide if an inverse exists. If yes, find it.
(a) $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{Z}$ defined by $\mathrm{f}(\mathrm{j})=-\mathrm{j}$
(b) f: $R \rightarrow R$ defined by $f(x)=x^{5}$
(c) $\mathrm{g}: \mathrm{R} \rightarrow(0, \infty)$ defined by $\mathrm{g}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}$
(d) $\mathrm{h}: \mathrm{Z} \rightarrow \mathrm{Z}$ defined by $\mathrm{h}(\mathrm{j})=\mathrm{j}+13$
(e) f: $(0, \infty) \rightarrow(0, \infty) \quad$ defined by $f(x)=1 / x$
(f) G:[0, $\infty) \rightarrow[0, \infty) \quad$ defined by $f(x)=x^{2}$

IV Find a bijection from
(i) R to R ; (ii) N to Z (iii) Z to N ; (iv) $[0,5]$ to $[7,17]$; (v) ( 0,1$]$ to $\mathrm{R} ; \mathbf{N}$ to $\mathbf{Q} \cap(0,1)$

V Show that a mapping $\mathrm{G}: \mathrm{X} \rightarrow \mathrm{Y}$ may also be regarded as a mapping from $\mathrm{P}(\mathrm{X})$ to $\mathrm{P}(\mathrm{Y})$.
VI What does it mean to say that two sets have the same cardinality? What does it mean to say that a set is countably infinite?

VII Show that each of the following sets is countable:
(a) The set of non-negative integers.
(b) The set of integers greater than or equal to 13 .
(c) $\mathbf{Z}$
(d) The set of positive even integers.
(e) The set of even integers.
(f) The set of odd integers.
(g) The set of rational numbers strictly between 0 and 1 .

VIII (a) Show that a subset of a countable set is either finite or countable.
(b) Show that if $A$ and $B$ are disjoint countable sets, then so is the union of $A$ and $B$. What if $A$ and $B$ are not disjoint?
(c) Show that if $A$ and $B$ are countable sets, then so is the Cartesian product of $A$ and $B$.
(d) Prove that a countable union of countable sets is countably infinite.
(e) Prove that the set of rational numbers strictly between 0 and 1 is countable.
(f) Demonstrate that $\mathbf{Q}$ is countable.

IX Show that if $S$ is a collection of sets, then cardinality is an equivalence relation on $S$.
$\mathbf{X}$ Using Cantor's diagonal argument, prove that $\mathbf{R}$ is not countable.


IX (a) Let $X$ be a set. Recall the definition of the power set, $\mathscr{P}(X)$, of $X$.
Show that the power set of a finite set is finite. In such a case, describe the relationship between $|\mathrm{X}|$ and $|\mathscr{P}(\mathrm{X})|$.
(b) Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and let $\mathrm{F}: \mathrm{X} \rightarrow \mathscr{P}(\mathrm{X})$ be defined by:
$\mathrm{F}(\mathrm{a})=\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}, \mathrm{F}(\mathrm{b})=\{\mathrm{a}, \mathrm{d}\}, \mathrm{F}(\mathrm{c})=\varphi, \mathrm{F}(\mathrm{d})=\{\mathrm{d}\}$
Find $\mathrm{D}^{*}=\{j \in X \mid j \notin F(j)\}$
(c) Let $\mathrm{X}=\mathrm{Z}^{+}$and let $\mathrm{G}: \mathrm{X} \rightarrow \mathrm{P}(\mathrm{X})$ be defined by:
$\mathrm{G}(\mathrm{a})=\{$ all prime numbers, p , such that $\mathrm{a} \leq \mathrm{p} \leq 2 \mathrm{a}\}$
Find $\mathrm{D}^{*}=\{j \in X \mid j \notin G(j)\}$
(d) Let $\mathrm{X}=\mathbf{Q}$ and let $\mathrm{H}: \mathrm{X} \rightarrow \mathscr{P}(\mathrm{X})$ be defined by:
$H(z)=\{$ all prime numbers, $p$, such that $\mathrm{z} \leq \mathrm{p} \leq 2 \mathrm{z}\}$
Find $D^{*}=\{q \in X \mid q \notin H(q)\}$
(e) Let $\mathrm{X}=\mathbf{R}$ and let $\mathrm{V}: \mathrm{X} \rightarrow \mathrm{P}(\mathrm{X})$ be defined by:

$$
V(a)=\left\{\begin{array}{l}
\{0\} \text { if } a \leq 0 \\
(a, a+1) \text { if } a \in Q^{+} \sim Z \\
{[a-1, a] \text { if } a \text { is } a \text { positive irrational number }} \\
\{a, a+3\} \text { if } a \in Z^{+}
\end{array}\right.
$$

Is V well-defined? If so, find $\mathrm{D}^{*}=\{z \in X \mid z \notin V(z)\}$
(f) Prove Cantor's Theorem: X and $\mathscr{F}(\mathrm{X})$ are not of the same cardinality.

Highly recommended: MIT lecture notes on cardinality, 24.118 (paradox and infinity)


Georg Ferdinand Ludwig Cantor ( $1845-1918$ ) is best known for his discovery of transfinite numbers and the creation of Set Theory

Lenore nodded. 'Gramma really likes antinomies. I think this guy here (looking down at the drawing on the back of the label) 'is the barber who shaves all and only those who do not shave themselves'.

- David Foster Wallace, The Broom of the System

