Math 201      Class Discussion:  Georg Cantor
     
26 November 2019
I  (Review)   Let f: XY be a function.  When does f possess an inverse?
For each of the following, decide if an inverse exists.  If yes, find it.
(a)   f: NZ    defined by f(j) = -j
(b)    f: R R    defined by f(x) = x5
(c)   g: R (0,   defined by g(x) = ex  
(d)    h: Z  Z    defined by h(j) = j + 13
(e)   f: (0,    (0,       defined by f(x) = 1/x
(f) [bookmark: _GoBack]  G:[0,    [0,       defined by f(x) = x2

II  (Review)    Find a bijection from 
     (i) R to R;    (ii)  N to Z   (iii) Z to N ; (iv) [0, 5] to [7, 17]; (v)  (0, 1] to R;   N to Q (0, 1)

III  (a)    Show that a subset of a countable set is either finite or countable.
(b)   Show that if A and B are disjoint countable sets, then so is the union of A and B.  What if A and B are not disjoint?
(c)  Show that if A and B are countable sets, then so is the Cartesian product of A and B.
(d)   Prove that a countable union of countable sets is countably infinite.
(e)   Prove that the set of rational numbers strictly between 0 and 1 is countable.
(f)   Demonstrate that Q is countable.
IV   What does it mean to say that two sets have the same cardinality?   What does it mean to say that a set is countably infinite? 

V   Show that if S is a collection of sets, then cardinality is an equivalence relation on S.
VI   Using Cantor’s diagonal argument, prove that R is not countable.
VII   (a)    Let X be a set.  Recall the definition of the power set, P (X), of X.  
(b)  Show that a mapping G: X Y may also be regarded as a mapping from P(X) to
Show that the power set of a finite set is finite.  In such a case, describe the relationship between |X| and | P (X)|.
(c)   Let X = {a, b, c, d} and let F: X → P (X) be defined by:
F(a) = {a, c, d}, F(b) = {a, d}, F(c) = φ, F(d) = {d}
Find D* = 

(d)   Let X = Z+ and let G: X → P(X) be defined by:
G(a) = {all prime numbers, p, such that a ≤ p ≤ 2a}
Find D* = 

(e)   Let X = Q and let H: X → P (X) be defined by:
 {all prime numbers, p, such that z ≤ p ≤ 2z}
Find D* = 

(f) Let X = R and let V: X → P (X) be defined by:
 
Is V well-defined?   If so, find D* = 

VIII   Prove Cantor’s Theorem:   X and P(X) are not of the same cardinality.


Highly recommended:  MIT lecture notes on cardinality, 24.118 (paradox and infinity)  
[image: GeorgCantor]
Georg Ferdinand Ludwig Cantor (1845 – 1918) is best known for
his discovery of transfinite numbers and the creation of Set Theory

Lenore nodded. ‘Gramma really likes antinomies. I think this guy here (looking down at the drawing on the back of the label) ‘is the barber who shaves all and only those who do not shave themselves’.
- David Foster Wallace, The Broom of the System
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