CLASS DISCUSSION: 22 OCTOBER 2019

PROOF BY CONTRAPOSITIVE

> Attention! Read and reread daily, Writing Proofs, pg 133 – 135.

Review of Direct Proofs:

Write *direct* proofs for each of the following, inserting parenthetical remarks to explain the rationale behind each step.

- **1.** Prove that if *n* is the form 3K + 1, then n^2 is of the form 3L + 1.
- **2.** Prove that if *n* is the form 5K + 3, then n^2 is of the form 5L + 4.
- **3.** Let *n* be larger than 6. Prove that $n^2 25$ cannot be prime.
- **4.** Let a, b, c, $d \in Z$. Prove that if a|b and c|d, then ac|bd.
- 5. Let *n* be an integer larger than 3. Then $n^3 8$ cannot be prime.
- 6. Prove that if n is odd, then n^3 is odd.
- 7. Let *a*, *b*, *c* be integers. Prove that if $a^2 | b$ and $b^3 | c$, then $a^6 | c$.
- 8. Let x and y be real numbers. Prove that if $x^2 + 5y = y^2 + 5x$ then either x = y or x + y = 5.
- 9. Let *m* and *n* be integers. Prove that if *m* and *n* are perfect squares, then mn is also a perfect square.

Prove each of the following by the *contrapositive method*.

- 1. If x and y are two integers for which x + y is even, then x and y have the same parity.
- 2. If x and y are two integers whose product is even, then at least one of the two must be even.
- **3.** If x and y are two integers whose product is odd, then both must be odd.
- 4. If n is a positive integer of the form n = 3k + 2, then n is not a perfect square.
- 5. Let $x \in Z$. If $x^2 6x + 5$ is even, then x is odd.
- 6. Let $x, y \in Z$. If $7 \nmid xy$, then $7 \nmid x$ and $7 \nmid y$.

Exercises for Chapter 5

- A. Use the method of contrapositive proof to prove the following statements. (In each case you should also think about how a direct proof would work. You will find in most cases that contrapositive is easier.)
 - **1.** Suppose $n \in \mathbb{Z}$. If n^2 is even, then n is even.
 - **2.** Suppose $n \in \mathbb{Z}$. If n^2 is odd, then n is odd.
 - 3. Suppose $a, b \in \mathbb{Z}$. If $a^2(b^2 2b)$ is odd, then a and b are odd.
 - **4.** Suppose $a, b, c \in \mathbb{Z}$. If a does not divide bc, then a does not divide b.
 - **5.** Suppose $x \in \mathbb{R}$. If $x^2 + 5x < 0$ then x < 0.
 - 6. Suppose $x \in \mathbb{R}$. If $x^3 x > 0$ then x > -1.
 - **7.** Suppose $a, b \in \mathbb{Z}$. If both ab and a + b are even, then both a and b are even.
 - 8. Suppose $x \in \mathbb{R}$. If $x^5 4x^4 + 3x^3 x^2 + 3x 4 \ge 0$, then $x \ge 0$.
 - **9.** Suppose $n \in \mathbb{Z}$. If $3 \nmid n^2$, then $3 \nmid n$.
 - **10.** Suppose $x, y, z \in \mathbb{Z}$ and $x \neq 0$. If $x \nmid yz$, then $x \nmid y$ and $x \nmid z$.
 - **11.** Suppose $x, y \in \mathbb{Z}$. If $x^2(y+3)$ is even, then x is even or y is odd.
 - **12.** Suppose $a \in \mathbb{Z}$. If a^2 is not divisible by 4, then a is odd.
 - **13.** Suppose $x \in \mathbb{R}$. If $x^5 + 7x^3 + 5x \ge x^4 + x^2 + 8$, then $x \ge 0$.
- **B.** Prove the following statements using either direct or contrapositive proof. Sometimes one approach will be much easier than the other.
 - **14.** If $a, b \in \mathbb{Z}$ and a and b have the same parity, then 3a + 7 and 7b 4 do not.
 - **15.** Suppose $x \in \mathbb{Z}$. If $x^3 1$ is even, then x is odd.
 - **16.** Suppose $x \in \mathbb{Z}$. If x + y is even, then x and y have the same parity.
 - **17.** If *n* is odd, then $8 | (n^2 1)$.
 - **18.** For any $a, b \in \mathbb{Z}$, it follows that $(a + b)^3 \equiv a^3 + b^3 \pmod{3}$.
 - **19.** Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$. If $a \equiv b \pmod{n}$ and $a \equiv c \pmod{n}$, then $c \equiv b \pmod{n}$.
 - **20.** If $a \in \mathbb{Z}$ and $a \equiv 1 \pmod{5}$, then $a^2 \equiv 1 \pmod{5}$.
 - **21.** Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$. If $a \equiv b \pmod{n}$, then $a^3 \equiv b^3 \pmod{n}$
 - **22.** Let $a \in \mathbb{Z}$, $n \in \mathbb{N}$. If a has remainder r when divided by n, then $a \equiv r \pmod{n}$.
 - **23.** Let $a, b, c \in \mathbb{Z}$ and $n \in \mathbb{N}$. If $a \equiv b \pmod{n}$, then $ca \equiv cb \pmod{n}$.
 - **24.** If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $ac \equiv bd \pmod{n}$.
 - **25.** If $n \in \mathbb{N}$ and $2^n 1$ is prime, then n is prime.
 - **26.** If $n = 2^k 1$ for $k \in \mathbb{N}$, then every entry in Row *n* of Pascal's Triangle is odd.
 - **27.** If $a \equiv 0 \pmod{4}$ or $a \equiv 1 \pmod{4}$, then $\binom{a}{2}$ is even.
 - **28.** If $n \in \mathbb{Z}$, then $4 \nmid (n^2 3)$.

Johann Carl Fredrich Gauss (1777–1855) introduced modular arithmetic.

MODULAR ARITHMETIC: Define $a \equiv b \mod m$ (for m > 0). Show that this is an equivalence relation on the set of integers, **Z**. In the following, assume that *a*, *b*, *c*, *d*, *m* are integers and that m > 0.

(A) Show that if $a \equiv b \mod m$, then

 $a + c \equiv b + c \mod m$

 $a-c \equiv b-c \mod m$

3. $ac \equiv bc \mod m$

(B)Show that if $ac \equiv bc \mod m$ (and c is not 0) then it need not follow that $a \equiv b$.

(C) Show that if d = gcd(c, m) and $ac \equiv bc \mod m$, then $a \equiv b \mod m/d$.

(D) Show that as a special case of the above we have:

If *c* and *m* are relatively prime and $ac \equiv bc \mod m$, then $a \equiv b \mod m$.

- (E) Suppose that $a \equiv b \mod m$ and $c \equiv d \mod m$. Prove that:
 - $a + c \equiv b + d \mod m$
 - $a-c \equiv b-d \mod m$
 - **3.** $ac \equiv bd \mod m$
- (F) Define addition and multiplication in Z_4 and in Z_5 .
- (G) Using modular arithmetic,
 - (a) find the remainder when 2^{125} is divided by 7.
 - (b) find the remainder when $(4^{19})(7^{99})$ is divided by 5.

The 24-hour time system has its origins in the Egyptian astronomical system

of <u>decans</u> and has been used for centuries by scientists, astronomers, navigators, and horologists. In East Asia, time notation was 24-hour before westernization in modern times. Western-made clocks were changed into 12 dual-hours style when they were shipped to China in the <u>Qing dynasty</u>. There are many surviving examples of clocks built using the 24-hour system, including the famous <u>Orloj</u> in Prague, and the <u>Shepherd Gate Clock</u> at <u>Greenwich</u>.

(Wikipedia)