Math 201 Class Discussion 31 October 2019

More on congruence

Fermat's Little Theorem

1. Bezout's theorem: For all integers, a and b, not both zero, there exist integers x and y such that $\mathrm{ax}+\mathrm{by}=\operatorname{gcd}(\mathrm{a}, \mathrm{b})$. For example, $\operatorname{gcd}(24,30)=(-1) 24+(1) 30, \operatorname{gcd}(7,9)=(4) 7+(-3) 9$.
2. Euclid's lemma: If p is prime and $p \mid a b$ then $p \mid a$ or $p \mid b$.

Proof: Suppose that p is prime but not a divisor of a and that $p \mid a b$.
We claim that p is a divisor of b.
Now gcd(p, a) = 1 (Why?)
Bezout's theorem implies that $\exists x, y \in Z \quad a x+p y=1$.
Multiplying both sides by $b: \quad a b x+b p y=b$
This implies that p is a divisor of b. (Why?)
3. Prove the more general version of Euclid's lemma: Same hypotheses except that p is assumed to be relatively prime to a (instead of requiring p to be prime). Same conclusion.
4. If $c a \equiv c b(\bmod n)$, must it follow that $a \equiv b$? (cancellation law?)
5. Suppose that c and n are relatively prime. Is the cancellation law valid?
6. Find the remainder when 7^{456} is divided by 8 .
7. Find the remainder when 8^{2019} is divided by 9 . Hint: consider 8^{3}.
8. Find the units digit of 3^{99}.
9. Find $17^{341} \bmod 5$.
10. Find $2^{501} \bmod 17$
11. Find $3^{701} \bmod 80$.
12. Find $11^{23456} \bmod 5$.
13. Find $13^{2345} \bmod 5$.
14. Fermat: If p is a prime number, then for any integer a, the number $a^{p}-a$ is an integer multiple of p. In the notation of modular arithmetic, this is expressed as $a^{p} \equiv a(\bmod \mathrm{p})$. If a is not divisible by p, then $a^{p-1} \equiv 1(\bmod p)$.
15. Proof of Fermat: Consider $\mathrm{a}, 2 \mathrm{a}, 3 \mathrm{a}, \ldots$ ($\mathrm{p}-1$)a. Show that these $\mathrm{p}-1$ numbers are distinct, nonzero, and thus must consist of $\{1,2, . . p-1\}$. Multiply together. Then use cancellation rule.
16. Use Fermat's little theorem to show that 17 divides $11^{104}+1$.
17. If $\operatorname{gcd}(a, 35)=1$, show that $a^{12} \equiv 1(\bmod 35)$. Hint: Using Fermat, $a^{6} \equiv 1(\bmod 7)$ and $a^{4} \equiv 1(\bmod 5)$.
18. If $\operatorname{gcd}(a, 133)=\operatorname{gcd}(b, 133)=1$, show that , for $n \geq 0,133$ is a divisor of $a^{18}-b^{18}$.
19. If $\operatorname{gcd}(a, 42)=1$, prove that $163=(3)(7)(8)$ divides $a^{6}-1$.
20. Let a, b be integers. Then $a \equiv b(\bmod 6)$ if and only if $a \equiv b(\bmod 2)$ and $a \equiv b(\bmod 3)$
21. Find the units digit of 3^{100} by using Fermat.
22. Show that, for $n \geq 0,13$ is a divisor of $11^{12 n+6}+1$.
23. The three most recent appearances of Haley's comet were in the years 1835, 1910, and 1986.

The next occurrence will be in 2061. Prove that $1835^{1910}+1986^{2061} \equiv 0(\bmod 7)$.
24. Prove that $a^{7} \equiv a(\bmod 42)$ for all n.
25. Prove that $a^{21} \equiv a(\bmod 15)$ for all n.
26. If $\operatorname{gcd}(a, 35)=1$, show that $a^{12} \equiv 1(\bmod 35)$. Hint: Using Fermat, $a^{6} \equiv 1(\bmod 7)$ and $a^{4} \equiv 1(\bmod 5)$.
27. Let a, b be integers. Then $a \equiv b(\bmod 6)$ if and only if $a \equiv b(\bmod 2)$ and $a \equiv b(\bmod 3)$
28. Find the units digit of 3^{100}.

