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More on congruence
Fermat’s Little Theorem

Bezout’s theorem: For all integers, a and b, not both zero, there exist integers x and y such that
ax + by = gcd(a, b). For example, gcd(24, 30) = (-1)24 + (1)30, gcd(7, 9) = (4)7 + (-3)9.
Euclid’s lemma: |f p is prime and pjab then pla or p|b.
Suppose that p is prime but not a divisor of a and that p|ab.
We claim that p is a divisor of b.
Now gcd(p, a) =1 (Why?)
Bezout’s theorem implies that 3x,y € Z ax + py = 1.
Multiplying both sides by b: abx + bpy =b
This implies that p is a divisor of b. (Why?)
Prove the more general version of Euclid’s lemma: Same hypotheses except that p is assumed
to be relatively prime to a (instead of requiring p to be prime). Same conclusion.
If ca =cb (modn), mustit follow that a = b? (cancellation law?)
Suppose that ¢ and n are relatively prime. Is the cancellation law valid?

Find the remainder when 7%¢ is divided by 8.

Find the remainder when 8% is divided by 9. Hint: consider 83.
Find the units digit of 3%°.

Find 17** mod 5.

. Find 20! mod 17

. Find 37°* mod 80.

. Find 11%*%% mod 5.
. Find 13%%> mod 5.

Fermat: If p is a prime number, then for any integer a, the number a® - g is an integer
multiple of p. In the notation of modular arithmetic, this is expressed as

aP = a (mod p). If ais not divisible by p, then aP~! = 1 (mod p).

Proof of Fermat: Consider a, 23, 33, ... (p-1)a. Show that these p-1 numbers are distinct, non-
zero, and thus must consist of {1, 2, .. p-1}. Multiply together. Then use cancellation rule.

Use Fermat’s little theorem to show that 17 divides 11'%4+1.

If gcd(a, 35) = 1, show that a'> = 1 (mod 35). Hint: Using Fermat, a® = 1 (mod 7) and

a* =1 (mod 5).

If gcd(a, 133) = ged(b, 133) = 1, show that, for n >0, 133 is a divisor of a8 — b8,

If gcd(a, 42) = 1, prove that 163 = (3)(7)(8) divides a® — 1.

Let a, b be integers. Then a = b (mod 6) if and only if a = b (mod 2) and a = b (mod 3)
Find the units digit of 31% by using Fermat.

Show that, for n >0, 13 is a divisor of 112"6 + 1.


https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Modular_arithmetic
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The three most recent appearances of Haley’s comet were in the years 1835, 1910, and 1986.
The next occurrence will be in 2061. Prove that

1835910+ 198621 = () (mod 7).

Prove that a’ = a (mod 42) for all n.

Prove that a®! = a (mod 15) for all n.

If gcd(a, 35) = 1, show that a'2 = 1 (mod 35). Hint: Using Fermat, a® = 1 (mod 7) and

a* =1 (mod 5).

Let a, b be integers. Then a = b (mod 6) if and only if a = b (mod 2) and a = b (mod 3)
Find the units digit of 31%,



