Math 201 Class Discussion 31 October 2019

More on congruence

Fermat's Little Theorem

- 1. Bezout's theorem: For all integers, *a* and *b*, not both zero, there exist integers *x* and *y* such that ax + by = gcd(a, b). For example, gcd(24, 30) = (-1)24 + (1)30, gcd(7, 9) = (4)7 + (-3)9.
- **2.** Euclid's lemma: If p is prime and p|ab then p|a or p|b.

Proof: Suppose that p is prime but not a divisor of a and that p|ab.

We claim that p is a divisor of b.

Now gcd(p, a) = 1 (Why?)

Bezout's theorem implies that $\exists x, y \in Z \ ax + py = 1$.

Multiplying both sides by b: abx + bpy = b

This implies that *p* is a divisor of *b*. (Why?)

- **3.** Prove the more general version of Euclid's lemma: Same hypotheses except that *p* is assumed to be relatively prime to *a* (instead of requiring p to be prime). Same conclusion.
- **4.** If $ca \equiv cb \pmod{n}$, must it follow that $a \equiv b$? (cancellation law?)
- 5. Suppose that *c* and *n* are relatively prime. Is the cancellation law valid?
- **6.** Find the remainder when 7^{456} is divided by 8.
- **7.** Find the remainder when 8^{2019} is divided by 9. Hint: consider 8^3 .
- **8.** Find the units digit of 3⁹⁹.
- **9.** Find 17³⁴¹ mod 5.
- **10.** Find 2⁵⁰¹ mod 17
- **11.** Find 3⁷⁰¹ mod 80.
- **12.** Find $11^{23456} \mod 5$.
- **13.** Find 13²³⁴⁵ mod 5.
- **14.** Fermat: If *p* is a prime number, then for any integer *a*, the number *a^p a* is an integer multiple of *p*. In the notation of modular arithmetic, this is expressed as

 $a^p \equiv a \pmod{p}$. If *a* is not divisible by *p*, then $a^{p-1} \equiv 1 \pmod{p}$.

- **15.** Proof of Fermat: Consider a, 2a, 3a, ... (p-1)a. Show that these p-1 numbers are distinct, non-zero, and thus must consist of {1, 2, .. p-1}. Multiply together. Then use cancellation rule.
- **16.** Use Fermat's little theorem to show that 17 divides 11^{104} +1.
- **17.** If gcd(a, 35) = 1, show that $a^{12} \equiv 1 \pmod{35}$. Hint: Using Fermat, $a^6 \equiv 1 \pmod{7}$ and $a^4 \equiv 1 \pmod{5}$.
- **18.** If gcd(a, 133) = gcd(b, 133) = 1, show that , for $n \ge 0$, 133 is a divisor of $a^{18} b^{18}$.
- **19.** If gcd(a, 42) = 1, prove that 163 = (3)(7)(8) divides $a^6 1$.
- **20.** Let a, b be integers. Then $a \equiv b \pmod{6}$ if and only if $a \equiv b \pmod{2}$ and $a \equiv b \pmod{3}$
- **21.** Find the units digit of 3¹⁰⁰ by using Fermat.
- **22.** Show that, for $n \ge 0$, 13 is a divisor of $11^{12n+6} + 1$.

- **23.** The three most recent appearances of Haley's comet were in the years 1835, 1910, and 1986. The next occurrence will be in 2061. Prove that $1835^{1910} + 1986^{2061} \equiv 0 \pmod{7}$.
- **24.** Prove that $a^7 \equiv a \pmod{42}$ for all n.
- **25.** Prove that $a^{21} \equiv a \pmod{15}$ for all n.
- **26.** If gcd(a, 35) = 1, show that $a^{12} \equiv 1 \pmod{35}$. Hint: Using Fermat, $a^6 \equiv 1 \pmod{7}$ and $a^4 \equiv 1 \pmod{5}$.
- **27.** Let a, b be integers. Then $a \equiv b \pmod{6}$ if and only if $a \equiv b \pmod{2}$ and $a \equiv b \pmod{3}$
- **28.** Find the units digit of 3^{100} .