MATH 201: PREPARING FOR TEST 2

17 OCTOBER 2019
Chapter 3 (sections $1-5,7$ (special case), $8-10$);
Chapter 10 (sections $1 \& 2$);
Chapters 4-6 (as much as we cover on Tuesday)

Albrecht-Dürer, Melancholia
(Note the magic square in the background.)
> Types of problems:

- counting: permutations, combinations, stars \& bars
- proofs (direct, cases, induction (ordinary \& strong), contrapositive, contradiction, if and only if, conditional)
- definitions in the case of number theory (odd, even, divisibility, prime number, etc.)
- fill in the blank
- True/False
- find a counter-example
- given proof with a missing part, fill in the missing part
- given a false "proof," correct it
- inclusion/exclusion principle (special case)

Practice problems:

1. Consider the set of all binary sequences of length 10 . How many such strings exist if
(a) No condition?
(b) Exactly three 1s?
(c) First digit and last digit must be 0 ?
(d) The first digit or last digit must be 0 ?
(e) The sum of the digits is 7?
2. Let n be an integer. Prove that $\mathrm{n}^{3}+\mathrm{n}^{2}+\mathrm{n}$ is even if and only if n is even.
3. Given integers, p and q prove that if both pq and $\mathrm{p}+\mathrm{q}$ are even, then both p and q are even using
(a) Proof by contrapositive
(b) Direct proof
4. Given integers c and d , where $\mathrm{c} \geq 2$, prove, using the method of contradiction, that either $c \nmid d$ or $c \nmid(d+1)$.
5. Let a and b be non-zero integers. Then we say write $\mathrm{a} \mid \mathrm{b}$ if \qquad .
6. The two basic steps in a proof by induction are called:
(A) \qquad
(B) \qquad
7. Explain why every integer can be expressed in the form $5 n, 5 n+1,5 n+2,5 n+3$ or $5 n+4$.

8. Find the flaw in the following "proof":

(from A. J. Hildebrand, notes from University of Illinois)
Claim: For all $n \in \mathbb{N},(*) \sum_{i=1}^{n} i=\frac{1}{2}\left(n+\frac{1}{2}\right)^{2}$
Proof: We prove the claim by induction.
Base step: When $n=1,(*)$ holds.
Induction step: Let $k \in \mathbb{N}$ and suppose (*) holds for $n=k$. Then

$$
\begin{aligned}
\sum_{i=1}^{k+1} i & =\sum_{i=1}^{k} i+(k+1) \\
& =\frac{1}{2}\left(k+\frac{1}{2}\right)^{2}+(k+1) \quad \text { (by ind. hypothesis) } \\
& =\frac{1}{2}\left(k^{2}+k+\frac{1}{4}+2 k+2\right) \quad \text { (by algebra) } \\
& =\frac{1}{2}\left(\left(k+1+\frac{1}{2}\right)^{2}-3 k-\frac{9}{4}+k+\frac{1}{4}+2 k+2\right) \quad \text { (more algebra) } \\
& =\frac{1}{2}\left((k+1)+\frac{1}{2}\right)^{2} \quad \text { (simplifying). }
\end{aligned}
$$

Thus, (*) holds for $n=k+1$, so the induction step is complete.
Conclusion: By the principle of induction, (*) holds for all $n \in \mathbb{N}$.
9. Explain Euclid's argument (by contradiction) that there are infinitely many primes.
10. Prove, using strong induction, that every integer greater than 1 can be factored into primes.
11. In class, we proved that, for all natural numbers n, any $2^{n} \times 2^{n}$ punctured chessboard could be tiled by tri-ominos. Prove independently that 3 must be a divisor of $2^{2 n}-1$
12. Albertine is teaching Chem 105 this semester. She has a total of 100 students in her class. Taking a survey (via Piazza), she finds that 28 students like dogs, 26 like cats, and 16 like rats. There are 12 students who like cats and dogs, 4 who like dogs and rats, and 6 who like cats and rats. Only 2 students like dogs, cats, and rats. How many students do not like any of the 3 animals: dogs, cats, rats.

13. Three distinguishable dice are thrown. In how many ways can the maximum of the 3 numbers occurring equal 5 ?
14. If you are dealt a hand of 7 cards from a standard deck (without regard to order), how many ways can you have:
(a) A flush? (all 7 of the same suit)
(b) 3 pairs (excluding 4 of a kind)?
(c) 4 of a kind and one pair (excluding 3 of a kind)?
(d) 4 of a kind and no other pair?
(e) No pair at all?
15. Find the flaw in the following bogus proof. Explain!

- Step 1: Let $a=b$.
- Step 2: Then $a^{2}=a b$
- Step 3: Then $a^{2}+a^{2}=a^{2}+a b$
- Step 4: Then $2 a^{2}=a^{2}+a b$
- Step 5: Then $2 a^{2}-2 a b=a^{2}+a b-2 a b$
- Step 6: Then $2 a^{2}-2 a b=a^{2}-a b$
- Step 7: This can be written as $2\left(a^{2}-a b\right)=1\left(a^{2}-a b\right)$
- Step 8: Dividing each side by $\left(a^{2}-a b\right)$ yields $1=2$

16. Consider a group of 11 American students $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots, \mathrm{J}, \mathrm{K}\}$ visiting the Louvre. In front of La Giaconda, they

line up at random for a photograph to be taken by their tour guide. In how many ways can the 11 students line up so that B and C are side-by-side?
17. (a) If a Martian has an infinite number of red, blue, yellow, and black socks in a drawer, how many socks must the Martian pull out of the drawer to guarantee it has a pair?
(b) A box contains 6 red, 8 green, 10 blue, 12 yellow, and 15 white balls. What is the minimum no. of balls we have to choose randomly from the box to ensure that we get 9 balls of same color?
18. Consider the equation $x_{1}+x_{2}+\ldots+x_{5}=99$
(a) How many solutions are there in non-negative integers?
(b) How many solutions are there in positive integers?
19. Prove that if x and y are irrational, must $\mathrm{x}+\mathrm{y}$ or xy be irrational as well?

