
"I proved that when you start to count your blessings, you find that they're infinite."

1. For any real numbers, $c$ and $d$, let us define the binary operation $\odot$ as follows:

$$
\mathrm{c} \odot \mathrm{~d}=\mathrm{c}^{2}+\mathrm{d}^{2}-1
$$

Give either a brief justification or counterexample for each of the following assertions:
(a) The set of integers is closed under the operation $\cdot$.
(b) The set of even integers is closed under the operation $)$ ?
(c) The set of odd integers is closed under ©
(d) The set of positive integers is closed under © .
(e) The set of rational numbers is closed under © .
(f) The set of irrational numbers is closed under $\odot$.
2. Let $S$ be the set of all polynomials for which odd powers of $x$ (i.e., $1,3,5,7, \ldots$ ) do not appear.

For example, $4+1 / 2 x^{2}-\pi x^{8} \in S$, but $x^{2}-\frac{5}{4} x^{81} \notin S$.
(a) Is S closed under the operation of differentiation? Why?
(b) Is S closed under the operation of taking the second derivative?
(c) Is S closed under the operation multiplication by $\mathrm{x}^{3}$ ?
(d) Is S closed under the operation multiplication by $\mathrm{x}^{4}$ ?
(e) Is S closed under the following unary operation, $\bullet$ ?

For all $p \in S$ define $\Pi p$ as follows: $\Pi p=\mathrm{p}\left(1+x^{4}\right)$
Note: $\Pi p$ means that polynomial p is evaluated at $1+\mathrm{x}^{4}$
(f) Is $S$ closed under the following binary operation $\theta$ ?

For all $p \in S \quad p:=p(1+x) \quad$ Here as before, we interpret $\mathrm{p}(1+\mathrm{x})$ is the polynomial p evaluated at $1+\mathrm{x}$.
3. Define the following binary relation R on $\mathbf{N}$. For $\mathrm{c}, \mathrm{d} \in \mathbf{Z}^{+}$, cRd if $|\mathrm{c}-\mathrm{d}|<5$. (Justify each answer!)
(a) Is R reflexive? Why?
(b) Is R symmetric? Why?
(c) Is R transitive? Why?
4. Define the binary relation $R$ on a non-empty set, S , of books as follows:

For $\mathrm{a}, \mathrm{b} \in \mathrm{S}, \mathrm{a} R \mathrm{~b}$ if book $\boldsymbol{a}$ costs more and contains fewer pages than book $\boldsymbol{b}$. (Justify each answer!)
(a) Is R reflexive? Why?
(b) Is R symmetric? Why?
(c) Is R transitive? Why?
5. Again, let S be a non-empty set of books. Let $H$ be the binary relation defined by:
for $a, b \in \mathrm{~S}, \mathrm{aHb}$ if book $\boldsymbol{a}$ costs more or contains fewer pages than book $\boldsymbol{b}$. (Justify each answer!)
(a) Is $H$ reflexive? Why?
(b) Is $H$ symmetric? Why?
(c) Is $H$ transitive? Why?
6. Let $x$ and $y$ be real numbers. Prove that if $x^{2}+5 y=y^{2}+5 x$. Prove that either $x=y$ or $x+y=5$.
7. Using the Euclidean algorithm, find the gcd of 7701543 and 3141
8. Using the method of contrapositive proof, prove each of the following statements:
(a) Suppose that $\mathrm{x}, \mathrm{y} \in \mathrm{Z}$. If $\mathrm{x}^{2}(\mathrm{y}+3)$ is even, prove that x is even or y is odd.
(b) Let $\mathrm{a} \in \mathrm{Z}$. Prove that if $\mathrm{a}^{2}$ is not divisible by 4 , then a is odd.
9. Prove that there exist no integers $a$ and $b$ for which $390 a+63 b=1$.
10. Use Fermat's little theorem to show that 17 divides $11^{104}+1$.
11. Prove that $\sqrt{6}$ is irrational.
12. Let $a \in Z$. Prove that $a^{3} \equiv a(\bmod 3)$.
13. Let $a, b \in \mathbf{Z}$. Prove that $(a-3) b^{2}$ is even if and only if $a$ is odd and $b$ is even.
14. The three most recent appearances of Haley's comet were in the years 1835, 1910, and 1986.

The next occurrence will be in 2061. Prove that $1835^{1910}+1986^{2061} \equiv 0(\bmod 7)$.
15. Find $2013^{13}(\bmod 13)$
16. Let W be the set of all words in the 2019 edition of the Oxford English dictionary. Define xRy if x and y have at least one letter in common. Is R reflexive? Symmetric? Transitive?
17. Let $A=R^{3}$. Let $a \sim b$ mean that $a$ and $b$ have the same $z$ coordinate. Does this define an equivalence relation?
18. Let $S$ be a finite set and $A=P(S)$, the power set of $S$. For any $a, b \in A$, let $a \sim b$ mean that $a$ and $b$ have the same cardinality (that is the same number of members).

Show that $\sim$ is an equivalence relation. Compute the equivalence classes when $S=\{1,2,3\}$.
19. The following purports to prove that the reflexivity condition is unnecessary, that is, it can be derived from symmetry and transitivity:

Suppose $\mathrm{a} \sim \mathrm{b}$. By symmetry, $\mathrm{b} \sim \mathrm{a}$. Since $\mathrm{a} \sim \mathrm{b}$ and $\mathrm{b} \sim \mathrm{a}$, by transitivity, $\mathrm{a} \sim \mathrm{a}$. Therefore, $\sim$ is reflexive .
What's wrong with this argument?
20. True or False? Explain.
(a) If $R$ is an equivalence relation on a finite non-empty set A , then the equivalence classes of $R$ all have the same number of elements.
(b) Let $R$ be a relation defined on the set $\mathbf{Z}$ by aRb if a $\neq \mathrm{b}$. Then R is symmetric and transitive.
21. Define GCD. Prove that $\operatorname{gcd}(\mathrm{n}, \mathrm{m})=\operatorname{gcd}(\mathrm{n}+\mathrm{m}, \mathrm{m})$.
22. Show that $\operatorname{gcd}(n, m)=\operatorname{gcd}(n-m, m)$.
23. Give an example to show that $\operatorname{gcd}(\mathrm{n}, \mathrm{m})=\operatorname{gcd}(\mathrm{n}+\mathrm{m}, \mathrm{n}-\mathrm{m})$ need not be true.
24. Suppose that n is even and $\operatorname{gcd}(\mathrm{n}, \mathrm{m})=5$. Show that m is odd.
25. Find all numbers $k$ with $0 \leq \mathrm{k} \leq 100$ such that $\operatorname{gcd}(100, k)=5$.
26. (a) Show that there is no integer $x$ satisfying the equation $2 x+1=5 x-4$
(b) Show that there is no integer x satisfying the equation $18 \mathrm{x}^{2}+39 \mathrm{x}-7=0$
(c) Show that the system of equations

$$
\begin{gathered}
11 x-5 y=7 \\
9 x+10 y=-3
\end{gathered}
$$

has no integer solution.
27. Let $\mathrm{A}=\{1,2,3,4,5\}$, and let $R=\{(1,1),(1,3),(1,4),(2,2),(2,5),(3,1),(3,3),(3,4),(4,1),(4,3),(4,4),(5,2),(5,5)\}$ define an equivalence relation on A . (You may wish to check this!) Which of the following is an equivalence class?
a) $\{1,2,3\}$
b) $\{2,3,5\}$
c) $\{1,3,4\}$
d) $\{1,2\}$
e) $\{1,2,3,4,5\}$
28. State Euclid's lemma. Prove that $\operatorname{gcd}(\mathrm{a}, \mathrm{bc})=1$ if and only if $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=1$ and $\operatorname{gcd}(\mathrm{a}, \mathrm{c})=1$.
29. Let $X$ denote the set of all continuous functions on $[0,1]$.
(a) Is X closed under addition, subtraction, multiplication, division?
(b) Is X closed under composition? Differentiation?
30. Let A be the set of all polynomials in the variable x . Is A closed under:
(a) Addition, subtraction, multiplication, composition, differentiation?
(b) Consider the unary operations in A defined by, for $p \in A$
(i) $U(p)=p(2 x)$;
(ii) $\mathrm{U}(\mathrm{p})=p^{\prime \prime}(x)+4 p^{\prime}(x)+x p(x)$.
(iii) $U(p)=x^{2} p(x)$

Under which of these operations is A closed?
31. (a) Prove that $\log _{2} 5$ is irrational.
(b) Find $2^{2019} \bmod 17$
(c) Find $2^{2019} \bmod 33$.
(d) Find the units and ten digits of (984321)(454443)(444555).
32. Let $Y$ be the power set of a finite non-empty set $F$.
(a) Is Y closed under complements?
(b) Is Y closed under union? Intersection?

