In each of the following questions, be certain to justify your answers!

1. [16 pts.] How many integers between 10,000 and 100,000 have no digits other than
(a) 6,7 , or 8 ?

Solution: Here, we count all the integers between 66,666 and 88,888 , inclusive.
Since the first digit is one of three characters $\{6,7,8\}$ and similarly for each of the remaining five digits, the total number of such integers is 3^{5}.
(b) $6,7,8$, or 0 ?

Solution: Once again, we must count the integers between 66,666 and 88,888 , but this time the first digit cannot be 0 . The total number of such integers is $\mathbf{3} \cdot \mathbf{4}^{4}$.
2. [16 pts.] Vladimir flips a quarter 10 times in a row and records the 10 outcomes (H or T for each flip).
(a) How many possible sequences are there?

Solution:

We are dealing with a sequence of 10 characters; each character can be H or T .
The number of such sequences is $\mathbf{2}^{\mathbf{1 0}}$.
(b) How many sequences contain only 1 head?

Solution: The one head may be placed in any one of 10 slots. Once that special slot is chosen, the other must all be T. Thus, the number of possibilities is $\mathbf{1 0}$.
(c) How many sequences contain a match on the first and last flips (that is, either a head on both first and last flips or a tail on both first and last flips)

Solution:

We can fill the slots from the second through the ninth with any of 2^{8} sequences of H , T.
Now we have but two choices for first and last place: Either two Hs or two Ts.
Thus, the number of such 10 -character sequences is $2 \cdot 2^{8}=2^{9}$.
(d) (extra credit) How many sequences contain 7 heads and a run of 3 tails? For example, НННТТТНННН.

Solution:

Consider the sequence of 7 heads; the three tails constitute a single unit and as such can be placed before anyone of the 7 heads or after the last head. Thus, there are $\mathbf{8}$ such strings.
3. [16 pts.] In how many ways can you draw 3 cards from a standard deck of 52, where order matters, in such a way that
(a) you have exactly two Jacks?

Solution:

There are 3 positions in which the "non-Jack" may appear (first, second, third card). Here we choose one of the 3 slots. The slot may be filled with any one of 48 cards.
To fill the first empty position there are 4 Jacks from which to choose. Finally, the remaining slot can be filled with any of the 3 remaining Jacks.
Hence, the total number of ways one can draw three cards subject to the given rules is 3-4•3-48.
(b) you have three different suits represented?

Solution:

The first card may be chosen independently of rank or suit, thus any of 52.
The second card must be of a new suit, hence 39 possibilities.
Finally, the third card must be of one of the remaining two suits, hence 26 options. Therefore, the total number of such sequences is $52 \cdot 39 \cdot 26$.
(c) each card is either a heart or a spade?

Solution:

There are 26 hearts and spades in the deck of 52 . Thus, the first card may be any one of 26 cards; the second card must be any one of the remaining 25 cards; and the third card any one of 24.

Hence the total number of such sequences is $26 \cdot \mathbf{2 5} \cdot \mathbf{2 4}$.

"Of course we're not going to experiment on you - we just needed another hand for our bridge game!"

