
GAME THEORY: AN INTRODUCTION–ERRATA

E. N. BARRON

Please notify me at ebarron@luc.edu for any errors. These have

been found so far.

(1) p. 12 Lemma 1.1.3, second line of proof should be

v+ = min
j

max
i

ai,j ≤ max
i

ai,j∗ ≤ ai∗,j∗ ≤ min
j

ai∗,j ≤ max
i

min
j

ai,j = v−.

p. 12 in proof of Lemma 1.1.3,“Let i∗ be such that . . . j = 1, 2,m.

Should be: “Let j∗ be such that v+ = maxi ai,j∗ and i∗ such that

v− = minj ai∗,j. Then

ai∗,j ≥ v− = v+
≥ ai,j∗, for any i = 1, 2, , n, j = 1, 2, ,m.

(2) p. 16, line 6, v+ = minx∈C maxy∈D f(x, y), and v− = maxy∈D minx∈C f(x, y),

should be

v+ = min
y∈D

max
x∈C

f(x, y), and v− = max
x∈C

min
y∈D

f(x, y).

(3) p. 22, The last line of the third paragraph “These probability vec-

tors are called mixed strategies, and will turn out to be the class

correct class of strategies for each of the players.” should be “These

probability vectors are called mixed strategies, and will turn out to

be the correct class of strategies for each of the players.”

(4) p. 47, Problem 1.29, part (a) should have minj E(X, j) = −
42

9
.

(5) p. 185, Problem 4.6 : Should be: Suppose that two firms have

constant unit costs c1 = 2, c2 = 1, and Γ = 19 in the Stackelberg

model.

(6) p. 75, Quotation added

(7) p. 111, line 7 from top E2 should be EII.

(8) p. 125, line 9 from bottom, E(1, Y ) should be EI(1, Y ).

(9) p. 145, line 5 from bottom, Y ∗T should be Y ∗T .

(10) p. 154, problem 3.23 has the answer fixed on p. 393: should have

f(x, y, p, q) = 7x + 7y − 6xy − 6 − p − q, and 2 − x ≤ q should be

2x − 1 ≤ q.
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2 E. N. BARRON

(11) p. 221, Example 5.1(4): “but will take $1 million . . . ,” should be

“but will take $100 million . . . .”

(12) p. 241, Problem 5.10: x − 2 should be x2.

(13) p. 246,

x1+x2+x3=\frac{5}{2}

should be x1 + x2 + x3 = 5/2.

(14) p. 400 Problem 5.13 should have 16 − x1 − x2, not 16 − x1 − x − 2.

(15) p. 401 Problem 5.19 solution in (b) should have x4 = 3
2
, not 32.

The following errors were found by Yan Jin to whom I am

grateful.

(1) p. 43, line 12 from bottom, E(4, Y ) = −5y + 6(1 − y) should be

E(4, Y ) = 7y − 8(1 − y).

(2) p. 44, line 1 from top, E(1, X) should be corrected as E(X, 1).

Line 2 from top, E(4, X) should be E(X, 2), and (x = 5/6, 1/3)

should be corrected as (x = 5
6
, v = 1

3
).

(3) p. 68, the second line of the proof of Theorem 2.3.1 should read

E(X,X) = XAXT = −XAT XT = −(XAT XT )T = −XAXT = −E(X,X).

In other words, the third A should be AT .

(4) p. 69, the third line from the bottom, (aλ,−bλ, cλ) should be

(cλ,−bλ, aλ).

I am grateful to Stephen Conwill who found the following errors.

(1) p.7 In the table at the bottom of the page II3 shout be the strategy:

If I1, then S; If I2, then S. The strategy II4 should be: If I1, then

S; If I2, then P.

(2) p. 8 line 5 from the top “pass as well” should be spin.

E-mail address: ebarron@luc.edu



12 MATRIX TWO-PERSON GAMES

We see that v− = largest min = −1 and v+ = smallest max = −1. This says
that v+ = v− = −1, and so 2× 2 Nim has v = −1. The optimal strategies are
located as the (row,column) where the smallest max is −1 and the largest min
is also −1. This occurs at any row for player I, but player II must play column
3, so i∗ = 1, 2, 3, j∗ = 3. The optimal strategies are not at any row column
combination giving −1 as the payoff. For instance, if II plays column 1, then
II will play row 1 and receive +1. Column 1 is not part of an optimal strategy.

We have mentioned that the most that I can be guaranteed to win should be less
than (or equal to) the most that II can be guaranteed to lose, (i.e., v− ≤ v+), Here is
a quick verification of this fact.

For any column j we know that for any fixed row i,minj aij ≤ aij , and so taking
the max of both sides over rows, we obtain

v− = max
i

min
j
aij ≤ max

i
aij .

This is true for any column j = 1, . . . ,m. The left side is just a number (i.e., v−)
independent of i as well as j, and it is smaller than the right side for any j. But this
means that v− ≤ minj maxi aij = v+, and we are done.

Now here is a precise definition of a (pure) saddle point involving only the payoffs,
which basically tells the players what to do in order to obtain the value of the game
when v+ = v−.

Definition 1.1.2 We call a particular row i∗ and column j∗ a saddle point in pure
strategies of the game if

aij∗ ≤ ai∗j∗ ≤ ai∗j , for all rows i = 1, . . . , n and columns j = 1, . . . ,m.
(1.1.1)

Lemma 1.1.3 A game will have a saddle point in pure strategies if and only if

v− = max
i

min
j
aij = min

j
max

i
aij = v+. (1.1.2)

Proof. If (1.1.1) is true, then

v+ = min
j

max
i
ai,j ≤ max

i
ai,j∗ ≤ ai∗,j∗ ≤ min

j
ai∗,j ≤ max

i
min

j
ai,j = v−.

But v− ≤ v+ always, and so we have equality throughout and v = v+ = v− = ai∗,j∗ .
On the other hand, if v+ = v− then

min
j

max
i
ai,j = max

i
min

j
ai,j .

Let j∗ be such that v+ = maxi ai,j∗ and i∗ such that v− = minj ai∗,j . Then

ai∗,j ≥ v− = v+ ≥ ai,j∗ , for any i = 1, . . . , n, j = 1, . . . ,m.
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firm 2’s production cost is C2(q2) = 2q2 + 5. Find the profit functions and the Nash
equilibrium quantities of production and profits.

4.3 Compare profits in the model with uncertain costs and the standard Cournot
model. Can you find a value of 0 < p < 1 that maximizes firm 1’s profits?

4.4 Suppose that we consider the Cournot model with uncertain costs but with three
possible costs, Prob(C2 = ci) = ri, i = 1, 2, 3, where ri ≥ 0, r1 + r2 + r3 = 1.
Solve for the optimal production quantities. Find the explicit production quantities
when r1 = 1

2 , r2 = 1
8 , r3 = 3

8 ,Γ = 100, and c1 = 2, c1 = 1, c2 = 2, c3 = 5.

4.5 In the Stackelberg model compare the quantity produced, the profit, and the
prices for firm 1 assuming that firm 2 did not exist so that firm 1 is a monopolist.

4.6 Suppose that two firms have constant unit costs c1 = 2, c2 = 1 and Γ = 19 in
the Stackelberg model.

(a) What are the profit functions?
(b) How much should firm 2 produce as a function of q1?
(c) How much should firm 1 produce? (d) How much, then, should firm 2 produce?

4.7 Set up and solve a Stackelberg model given three firms with constant unit costs
c1, c2, c3 and firm 1 announcing production quantity q1.

4.8 In the Bertrand model show that if c1 = c2 = c, then (p∗1, p
∗
2) = (c, c) is a

Nash equilibrium.

4.9 Determine the entry deterrence level of production for firm 1 given Γ =
100, a = 2, b = 10.How much profit is lost by setting the price to deter a competitor?

4.10 We could make one more adjustment in the Bertrand model and see what
effect it has on the model. What if we put a limit on the total quantity that a firm can
produce? This limits the supply and possibly will put a floor on prices. Let K ≥ Γ

2
denote the maximum quantity of gadgets that each firm can produce and recall that
D(p) = Γ−p is the quantity of gadgets demanded at price p. Find the profit functions
for each firm.

4.11 Suppose that the demand functions in the Bertrand model are given by

q1 = D1(p1, p2) = (a− p1 + bp2)
+ and q2 = D2(p1, p2) = (a− p2 + bp1)

+,

where 1 ≥ b > 0. This says that the quantity of gadgets sold by a firm will increase
if the price set by the opposing firm is too high. Assume that both firms have a cost
of production c ≤ min{p1, p2}.

(a) Show that the profit functions will be given by

ui(p1, p2) = Di(p1, p2)(pi − c), i = 1, 2.
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Why? Well, v(123) = d because the car will be sold for d, v(1) = M because
the car is worth M to player 1, v(13) = d because player 1 will sell the car
to player 3 for d > M, v(12) = c because the car will be sold to player 2
for c > M, and so on. The reader can easily check that v is a characteristic
function.

3. A customer wants to buy a bolt and a nut for the bolt. There are three
players but player 1 owns the bolt and players 2 and 3 each own a nut. A bolt
together with a nut is worth 5. We could define a characteristic function for
this game as

v(123) = 5, v(12) = v(13) = 5, v(1) = v(2) = v(3) = 0, and v(∅) = 0.

In contrast to the car problem v(1) = 0 because a bolt without a nut is worthless
to player 1.

4. A small research drug company, labeled 1, has developed a drug. It does
not have the resources to get FDA (Food and Drug Administration) approval
or to market the drug, so it considers selling the rights to the drug to a big drug
company. Drug companies 2 and 3 are interested in buying the rights but only
if both companies are involved in order to spread the risks. Suppose that the
research drug company wants $1 billion, but will take $100 million if only one
of the two big drug companies are involved. The profit to a participating drug
company 2 or 3 is $5 billion, which they split. Here is a possible characteristic
function with units in billions:

v(1) = v(2) = v(3) = 0, v(12) = 0.1, v(13) = 0.1, v(23) = 0, v(123) = 5,

because any coalition which doesn’t include player 1 will be worth nothing.
5. A simple game is one in which v(S) = 1 or v(S) = 0 for all coalitions

S. A coalition with v(S) = 1 is called a winning coalition and one with
v(S) = 0 is a losing coalition. For example, if we take v(S) = 1 if |S| > n/2
and v(S) = 0 otherwise, we have a simple game that is a model of majority
voting. If a coalition contains more than half of the players, it has the majority
of votes and is a winning coalition.

6. In any bimatrix (A,B) nonzero sum game we may obtain a characteristic
function by taking v(1) = value(A), v(2) = value(BT ), and v(12) =sum of
largest payoff pair in (A,B). Checking that this is a characteristic function is
skipped. The next example works one out.

EXAMPLE 5.2

In this example we will construct a characteristic function for a version of the
prisoner’s dilemma game in which we assumed that there was no cooperation.
Now we will assume that the players may cooperate and negotiate. One form
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so that ~x∗ minimizes the maximum excess for any coalition S. When there is
only one such allocation ~x∗, it is the fair allocation. The problem is that there
may be more than one element in the least core, then we still have a problem
as to how to choose among them.

Remark: Maple Calculation of the Least Core. The point of calculating the
ε-core is that the core is not a sufficient set to ultimately solve the problem in the
case when the core C(0) is (1) empty or (2) consists of more than one point. In case
(2) the issue, of course, is which point should be chosen as the fair allocation. The
ε-core seeks to address this issue by shrinking the core at the same rate from each
side of the boundary until we reach a single point. We can use Maple to do this.

The calculation of the least core is equivalent to the linear programming problem

Minimize z
subject to

v(S) − ~x(S) = v(S) −
∑

i∈S

xi ≤ z, for all S ( N.

The characteristic function need not be normalized. So all we really need to do is
to formulate the game using characteristic functions, write down the constraints, and
plug them into Maple. The result will be the smallest z = ε1 that makes C(ε1) 6= ∅,
as well as an imputation which provides the minimum.

For example, let’s suppose we start with the characteristic function

v(i) = 0, i = 1, 2, 3, v(12) = 2, v(23) = 1, v(13) = 0, v(123) =
5

2
.

The constraint set is the ε-core

C(ε) = {~x = (x1, x2, x3) | v(S) − x(S) ≤ ε, S ( N}
= {−xi ≤ ε, i = 1, 2, 3, 2− x1 − x2 ≤ ε, 1 − x2 − x3 ≤ ε,

0 − x1 − x3 ≤ ε, x1 + x2 + x3 =
5

2
}

The Maple commands used to solve this are very simple:
> with(simplex):

> cnsts:={-x1<=z,-x2<=z,-x3<=z,2-x1-x2<=z,1-x2-x3<=z,-x1-x3<=z,

x1+x2+x3=5/2};

> minimize(z,cnsts);

Maple produces the output

x1 =
5

4
, x2 = 1, x3 =

1

4
, z = −1

4
.
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5.16 X1 = C(− 1
10 ) = {x1 + x2 = 9

10 ,
4
10 ≤ x1,

2
10 ≤ x2}. The next least core is

X2 = C(− 1
4 ) = {( 11

20 ,
7
20 ,

2
20 )}.

5.17 The least core is the set C(−1) = {x1 = 1, x2 + x3 = 11, x2 ≥ 1, x3 ≥ 2}.
The nucleolus is the single point {(1, 11

2 ,
11
2 )}

5.18 For the least core ε1 = − 1
2 :

Least core = X1 = C(−1

2
) = {x1 + x2 =

3

2
, x3 + x4 =

3

2
, xi ≥

1

2
, i = 1, 2, 3, 4,

x2 + x3 ≥ 3

2
, x1 + x4 ≥ 3

2
, x1 + x3 ≥ 5

4
, x2 + x4 ≥ 1

2
,

x1 + x2 + x3 ≥ 3

2
, x1 + x2 + x4 ≥ 3

2
, x1 + x3 + x4 ≥ 3

2
,

x2 + x3 + x4 ≥ 3

2
, x1 + x2 + x3 + x4 = 3}.

Next X2 has ε2 = 1. X3 has ε3 = 3, and nucleolus={( 3
4 ,

3
4 ,

3
4 ,

3
4 )}.

5.19 (a) The characteristic function is the number of hours saved by a coalition.
v(i) = 0, and

v(12) = 4, v(13) = 4, v(14) = 3, v(23) = 6, v(24) = 2, v(34) = 2,

v(123) = 10, v(124) = 7, v(134) = 7, v(234) = 8, v(1234) = 13.

(b) Nucleolus={( 13
4 ,

33
8 ,

33
8 ,

3
2 )} with units in hours. The least core is

X1 = C(−3

2
) = {x1 + x2 + x3 =

23

2
, x4 =

3

2
,

x1 + x2 + x3 + x4 = 13, x1 + x2 + x4 ≥ 17

2
,

x2 + x3 + x4 ≥ 19

2
, x1 ≥ 3

2
, x2 ≥ 3

2
,

x1 + x2 ≥ 11

2
, x3 ≥ 3

2
, x1 + x3 ≥ 11

2
,

x2 + x3 ≥ 15

2
, x1 + x4 ≥ 9

2
, x2 + x4 ≥ 7

2
,

x3 + x4 ≥ 7

2
, x1 + x3 + x4 ≥ 17

2
}

The next least core, which will be the nucleolus, is X2 = {( 13
4 ,

33
8 ,

33
8 ,

3
2 )} with

ε2 = 10.
(c) The schedule is set up as follows: (i) Curly works from 9:00 to 11:52.5, (ii)

Larry works from 11:52.5 to 1:45, (iii) Shemp works from 1:45 to 3:30, and (iv) Moe
works from 3:30 to 5:00.
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Definition 1.2.1 Let C and D be sets. A function f : C ×D → R has at least one
saddle point (x∗, y∗) with x∗ ∈ C and y∗ ∈ D if

f(x, y∗) ≤ f(x∗, y∗) ≤ f(x∗, y) for all x ∈ C, y ∈ D.

Once again we could define the upper and lower values for the game defined using
the function f , called a continuous game, by

v+ = min
y∈D

max
x∈C

f(x, y), and v− = max
x∈C

min
y∈D

f(x, y).

You can check as before that v− ≤ v+. If it turns out that v+ = v− we say, as usual,
that the game has a value v = v+ = v−. The next theorem, the most important
in game theory and extremely useful in many branches of mathematics is called the
von Neumann minimax theorem. It gives conditions on f, C, and D so that the
associated game has a value v = v+ = v−. It will be used to determine what we
need to do in matrix games in order to get a value.

In order to state the theorem we need to introduce some definitions.

Definition 1.2.2 A set C ⊂ Rn is convex if for any two points a, b ∈ C and all
scalars λ ∈ [0, 1], the line segment connecting a and b is also in C, i.e., for all
a, b ∈ C, λa+ (1 − λ)b ∈ C, ∀ 0 ≤ λ ≤ 1.
C is closed if it contains all limit points of sequences in C; C is bounded if it can

be jammed inside a ball for some large enough radius. A closed and bounded subset
of Euclidean space is compact.

A function g : C → R is convex if

g(λa+ (1 − λ)b) ≤ λg(a) + (1 − λ)g(b)

for any a, b ∈ C, 0 ≤ λ ≤ 1. This says that the line connecting g(a) with g(b),
namely {λg(a) + (1 − λ)g(b) : 0 ≤ λ ≤ 1}, must always lie above the function
values g(λa+ (1 − λ)b), 0 ≤ λ ≤ 1.

The function is concave if g(λa + (1 − λ)b) ≥ λg(a) + (1 − λ)g(b) for any
a, b ∈ C, 0 ≤ λ ≤ 1. A function is strictly convex or concave, if the inequalities are
strict.

Figure 1.4 compares a convex set and a nonconvex set. Also, recall the common
calculus test for twice differentiable functions of one variable. If g = g(x) is a
function of one variable and has at least two derivatives, then g is convex if g ′′ ≥ 0
and g is concave if g′′ ≤ 0.

Now the basic von Neumann minimax theorem.

Theorem 1.2.3 Let f : C × D → R be a continuous function. Let C ⊂ Rn and
D ⊂ Rm be convex, closed, and bounded. Suppose that x 7→ f(x, y) is concave and
y 7→ f(x, y) is convex. Then

v+ = min
y∈D

max
x∈C

f(x, y) = max
x∈C

min
y∈D

f(x, y) = v−.
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We see that v− = largest min = −1 and v+ = smallest max = −1. This says
that v+ = v− = −1, and so 2× 2 Nim has v = −1. The optimal strategies are
located as the (row,column) where the smallest max is −1 and the largest min
is also −1. This occurs at any row for player I, but player II must play column
3, so i∗ = 1, 2, 3, j∗ = 3. The optimal strategies are not at any row column
combination giving −1 as the payoff. For instance, if II plays column 1, then
II will play row 1 and receive +1. Column 1 is not part of an optimal strategy.

We have mentioned that the most that I can be guaranteed to win should be less
than (or equal to) the most that II can be guaranteed to lose, (i.e., v− ≤ v+), Here is
a quick verification of this fact.

For any column j we know that for any fixed row i,minj aij ≤ aij , and so taking
the max of both sides over rows, we obtain

v− = max
i

min
j
aij ≤ max

i
aij .

This is true for any column j = 1, . . . ,m. The left side is just a number (i.e., v−)
independent of i as well as j, and it is smaller than the right side for any j. But this
means that v− ≤ minj maxi aij = v+, and we are done.

Now here is a precise definition of a (pure) saddle point involving only the payoffs,
which basically tells the players what to do in order to obtain the value of the game
when v+ = v−.

Definition 1.1.2 We call a particular row i∗ and column j∗ a saddle point in pure
strategies of the game if

aij∗ ≤ ai∗j∗ ≤ ai∗j , for all rows i = 1, . . . , n and columns j = 1, . . . ,m.
(1.1.1)

Lemma 1.1.3 A game will have a saddle point in pure strategies if and only if

v− = max
i

min
j
aij = min

j
max

i
aij = v+. (1.1.2)

Proof. If (1.1.1) is true, then

v+ = min
j

max
i
ai,j ≤ max

i
ai,j∗ ≤ ai∗,j∗ ≤ min

j
ai∗,j ≤ max

i
min

j
ai,j = v−.

But v− ≤ v+ always, and so we have equality throughout and v = v+ = v− = ai∗,j∗ .
On the other hand, if v+ = v− then

min
j

max
i
ai,j = max

i
min

j
ai,j .

Let j∗ be such that v+ = maxi ai,j∗ and i∗ such that v− = minj ai∗,j . Then

ai∗,j ≥ v− = v+ ≥ ai,j∗ , for any i = 1, . . . , n, j = 1, . . . ,m.
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firm 2’s production cost is C2(q2) = 2q2 + 5. Find the profit functions and the Nash
equilibrium quantities of production and profits.

4.3 Compare profits in the model with uncertain costs and the standard Cournot
model. Can you find a value of 0 < p < 1 that maximizes firm 1’s profits?

4.4 Suppose that we consider the Cournot model with uncertain costs but with three
possible costs, Prob(C2 = ci) = ri, i = 1, 2, 3, where ri ≥ 0, r1 + r2 + r3 = 1.
Solve for the optimal production quantities. Find the explicit production quantities
when r1 = 1

2 , r2 = 1
8 , r3 = 3

8 ,Γ = 100, and c1 = 2, c1 = 1, c2 = 2, c3 = 5.

4.5 In the Stackelberg model compare the quantity produced, the profit, and the
prices for firm 1 assuming that firm 2 did not exist so that firm 1 is a monopolist.

4.6 Suppose that two firms have constant unit costs c1 = 2, c2 = 1 and Γ = 19 in
the Stackelberg model.

(a) What are the profit functions?
(b) How much should firm 2 produce as a function of q1?
(c) How much should firm 1 produce? (d) How much, then, should firm 2 produce?

4.7 Set up and solve a Stackelberg model given three firms with constant unit costs
c1, c2, c3 and firm 1 announcing production quantity q1.

4.8 In the Bertrand model show that if c1 = c2 = c, then (p∗1, p
∗
2) = (c, c) is a

Nash equilibrium.

4.9 Determine the entry deterrence level of production for firm 1 given Γ =
100, a = 2, b = 10.How much profit is lost by setting the price to deter a competitor?

4.10 We could make one more adjustment in the Bertrand model and see what
effect it has on the model. What if we put a limit on the total quantity that a firm can
produce? This limits the supply and possibly will put a floor on prices. Let K ≥ Γ

2
denote the maximum quantity of gadgets that each firm can produce and recall that
D(p) = Γ−p is the quantity of gadgets demanded at price p. Find the profit functions
for each firm.

4.11 Suppose that the demand functions in the Bertrand model are given by

q1 = D1(p1, p2) = (a− p1 + bp2)
+ and q2 = D2(p1, p2) = (a− p2 + bp1)

+,

where 1 ≥ b > 0. This says that the quantity of gadgets sold by a firm will increase
if the price set by the opposing firm is too high. Assume that both firms have a cost
of production c ≤ min{p1, p2}.

(a) Show that the profit functions will be given by

ui(p1, p2) = Di(p1, p2)(pi − c), i = 1, 2.
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Why? Well, v(123) = d because the car will be sold for d, v(1) = M because
the car is worth M to player 1, v(13) = d because player 1 will sell the car
to player 3 for d > M, v(12) = c because the car will be sold to player 2
for c > M, and so on. The reader can easily check that v is a characteristic
function.

3. A customer wants to buy a bolt and a nut for the bolt. There are three
players but player 1 owns the bolt and players 2 and 3 each own a nut. A bolt
together with a nut is worth 5. We could define a characteristic function for
this game as

v(123) = 5, v(12) = v(13) = 5, v(1) = v(2) = v(3) = 0, and v(∅) = 0.

In contrast to the car problem v(1) = 0 because a bolt without a nut is worthless
to player 1.

4. A small research drug company, labeled 1, has developed a drug. It does
not have the resources to get FDA (Food and Drug Administration) approval
or to market the drug, so it considers selling the rights to the drug to a big drug
company. Drug companies 2 and 3 are interested in buying the rights but only
if both companies are involved in order to spread the risks. Suppose that the
research drug company wants $1 billion, but will take $100 million if only one
of the two big drug companies are involved. The profit to a participating drug
company 2 or 3 is $5 billion, which they split. Here is a possible characteristic
function with units in billions:

v(1) = v(2) = v(3) = 0, v(12) = 0.1, v(13) = 0.1, v(23) = 0, v(123) = 5,

because any coalition which doesn’t include player 1 will be worth nothing.
5. A simple game is one in which v(S) = 1 or v(S) = 0 for all coalitions

S. A coalition with v(S) = 1 is called a winning coalition and one with
v(S) = 0 is a losing coalition. For example, if we take v(S) = 1 if |S| > n/2
and v(S) = 0 otherwise, we have a simple game that is a model of majority
voting. If a coalition contains more than half of the players, it has the majority
of votes and is a winning coalition.

6. In any bimatrix (A,B) nonzero sum game we may obtain a characteristic
function by taking v(1) = value(A), v(2) = value(BT ), and v(12) =sum of
largest payoff pair in (A,B). Checking that this is a characteristic function is
skipped. The next example works one out.

EXAMPLE 5.2

In this example we will construct a characteristic function for a version of the
prisoner’s dilemma game in which we assumed that there was no cooperation.
Now we will assume that the players may cooperate and negotiate. One form
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so that ~x∗ minimizes the maximum excess for any coalition S. When there is
only one such allocation ~x∗, it is the fair allocation. The problem is that there
may be more than one element in the least core, then we still have a problem
as to how to choose among them.

Remark: Maple Calculation of the Least Core. The point of calculating the
ε-core is that the core is not a sufficient set to ultimately solve the problem in the
case when the core C(0) is (1) empty or (2) consists of more than one point. In case
(2) the issue, of course, is which point should be chosen as the fair allocation. The
ε-core seeks to address this issue by shrinking the core at the same rate from each
side of the boundary until we reach a single point. We can use Maple to do this.

The calculation of the least core is equivalent to the linear programming problem

Minimize z
subject to

v(S) − ~x(S) = v(S) −
∑

i∈S

xi ≤ z, for all S ( N.

The characteristic function need not be normalized. So all we really need to do is
to formulate the game using characteristic functions, write down the constraints, and
plug them into Maple. The result will be the smallest z = ε1 that makes C(ε1) 6= ∅,
as well as an imputation which provides the minimum.

For example, let’s suppose we start with the characteristic function

v(i) = 0, i = 1, 2, 3, v(12) = 2, v(23) = 1, v(13) = 0, v(123) =
5

2
.

The constraint set is the ε-core

C(ε) = {~x = (x1, x2, x3) | v(S) − x(S) ≤ ε, S ( N}
= {−xi ≤ ε, i = 1, 2, 3, 2− x1 − x2 ≤ ε, 1 − x2 − x3 ≤ ε,

0 − x1 − x3 ≤ ε, x1 + x2 + x3 =
5

2
}

The Maple commands used to solve this are very simple:
> with(simplex):

> cnsts:={-x1<=z,-x2<=z,-x3<=z,2-x1-x2<=z,1-x2-x3<=z,-x1-x3<=z,

x1+x2+x3=5/2};

> minimize(z,cnsts);

Maple produces the output

x1 =
5

4
, x2 = 1, x3 =

1

4
, z = −1

4
.
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5.16 X1 = C(− 1
10 ) = {x1 + x2 = 9

10 ,
4
10 ≤ x1,

2
10 ≤ x2}. The next least core is

X2 = C(− 1
4 ) = {( 11

20 ,
7
20 ,

2
20 )}.

5.17 The least core is the set C(−1) = {x1 = 1, x2 + x3 = 11, x2 ≥ 1, x3 ≥ 2}.
The nucleolus is the single point {(1, 11

2 ,
11
2 )}

5.18 For the least core ε1 = − 1
2 :

Least core = X1 = C(−1

2
) = {x1 + x2 =

3

2
, x3 + x4 =

3

2
, xi ≥

1

2
, i = 1, 2, 3, 4,

x2 + x3 ≥ 3

2
, x1 + x4 ≥ 3

2
, x1 + x3 ≥ 5

4
, x2 + x4 ≥ 1

2
,

x1 + x2 + x3 ≥ 3

2
, x1 + x2 + x4 ≥ 3

2
, x1 + x3 + x4 ≥ 3

2
,

x2 + x3 + x4 ≥ 3

2
, x1 + x2 + x3 + x4 = 3}.

Next X2 has ε2 = 1. X3 has ε3 = 3, and nucleolus={( 3
4 ,

3
4 ,

3
4 ,

3
4 )}.

5.19 (a) The characteristic function is the number of hours saved by a coalition.
v(i) = 0, and

v(12) = 4, v(13) = 4, v(14) = 3, v(23) = 6, v(24) = 2, v(34) = 2,

v(123) = 10, v(124) = 7, v(134) = 7, v(234) = 8, v(1234) = 13.

(b) Nucleolus={( 13
4 ,

33
8 ,

33
8 ,

3
2 )} with units in hours. The least core is

X1 = C(−3

2
) = {x1 + x2 + x3 =

23

2
, x4 =

3

2
,

x1 + x2 + x3 + x4 = 13, x1 + x2 + x4 ≥ 17

2
,

x2 + x3 + x4 ≥ 19

2
, x1 ≥ 3

2
, x2 ≥ 3

2
,

x1 + x2 ≥ 11

2
, x3 ≥ 3

2
, x1 + x3 ≥ 11

2
,

x2 + x3 ≥ 15

2
, x1 + x4 ≥ 9

2
, x2 + x4 ≥ 7

2
,

x3 + x4 ≥ 7

2
, x1 + x3 + x4 ≥ 17

2
}

The next least core, which will be the nucleolus, is X2 = {( 13
4 ,

33
8 ,

33
8 ,

3
2 )} with

ε2 = 10.
(c) The schedule is set up as follows: (i) Curly works from 9:00 to 11:52.5, (ii)

Larry works from 11:52.5 to 1:45, (iii) Shemp works from 1:45 to 3:30, and (iv) Moe
works from 3:30 to 5:00.
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Definition 1.2.1 Let C and D be sets. A function f : C ×D → R has at least one
saddle point (x∗, y∗) with x∗ ∈ C and y∗ ∈ D if

f(x, y∗) ≤ f(x∗, y∗) ≤ f(x∗, y) for all x ∈ C, y ∈ D.

Once again we could define the upper and lower values for the game defined using
the function f , called a continuous game, by

v+ = min
y∈D

max
x∈C

f(x, y), and v− = max
x∈C

min
y∈D

f(x, y).

You can check as before that v− ≤ v+. If it turns out that v+ = v− we say, as usual,
that the game has a value v = v+ = v−. The next theorem, the most important
in game theory and extremely useful in many branches of mathematics is called the
von Neumann minimax theorem. It gives conditions on f, C, and D so that the
associated game has a value v = v+ = v−. It will be used to determine what we
need to do in matrix games in order to get a value.

In order to state the theorem we need to introduce some definitions.

Definition 1.2.2 A set C ⊂ Rn is convex if for any two points a, b ∈ C and all
scalars λ ∈ [0, 1], the line segment connecting a and b is also in C, i.e., for all
a, b ∈ C, λa+ (1 − λ)b ∈ C, ∀ 0 ≤ λ ≤ 1.
C is closed if it contains all limit points of sequences in C; C is bounded if it can

be jammed inside a ball for some large enough radius. A closed and bounded subset
of Euclidean space is compact.

A function g : C → R is convex if

g(λa+ (1 − λ)b) ≤ λg(a) + (1 − λ)g(b)

for any a, b ∈ C, 0 ≤ λ ≤ 1. This says that the line connecting g(a) with g(b),
namely {λg(a) + (1 − λ)g(b) : 0 ≤ λ ≤ 1}, must always lie above the function
values g(λa+ (1 − λ)b), 0 ≤ λ ≤ 1.

The function is concave if g(λa + (1 − λ)b) ≥ λg(a) + (1 − λ)g(b) for any
a, b ∈ C, 0 ≤ λ ≤ 1. A function is strictly convex or concave, if the inequalities are
strict.

Figure 1.4 compares a convex set and a nonconvex set. Also, recall the common
calculus test for twice differentiable functions of one variable. If g = g(x) is a
function of one variable and has at least two derivatives, then g is convex if g ′′ ≥ 0
and g is concave if g′′ ≤ 0.

Now the basic von Neumann minimax theorem.

Theorem 1.2.3 Let f : C × D → R be a continuous function. Let C ⊂ Rn and
D ⊂ Rm be convex, closed, and bounded. Suppose that x 7→ f(x, y) is concave and
y 7→ f(x, y) is convex. Then

v+ = min
y∈D

max
x∈C

f(x, y) = max
x∈C

min
y∈D

f(x, y) = v−.
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In fact, define y = ϕ(x) as the function so that f(x, ϕ(x)) = miny f(x, y). This
function is well defined and continuous by the assumptions. Also define the function
x = ψ(y) by f(ψ(y), y) = maxx f(x, y). The new function g(x) = ψ(ϕ(x)) is then
a continuous function taking points in [0, 1] and resulting in points in [0, 1]. There
is a theorem, called the Brouwer fixed-point theorem, which now guarantees that
there is a point x∗ ∈ [0, 1] so that g(x∗) = x∗. Set y∗ = ϕ(x∗). Verify that (x∗, y∗)
satisfies the requirements of a saddle point for f.

1.3 MIXED STRATEGIES

Von Neumann’s theorem suggests that if we expect to formulate a game model which
will give us a saddle point, in some sense, we need convexity of the sets of strategies,
whatever they may be, and convexity-concavity of the payoff function, whatever it
may be.

Now let’s review a bit. In most two-person zero sum games a saddle point in
pure strategies will not exist because that would say that the players should always
do the same thing. Such games, which include 2 × 2 Nim, tic-tac-toe, and many
others, are not interesting when played over and over. It seems that if a player should
not always play the same strategy, then there should be some randomness involved,
because otherwise the opposing player will be able to figure out what the first player
is doing and take advantage of it. A player who chooses a pure strategy randomly
chooses a row or column according to some probability process that specifies the
chance that each pure strategy will be played. These probability vectors are called
mixed strategies, and will turn out to be the correct class of strategies for each of the
players.

Definition 1.3.1 A mixed strategy is a vector X = (x1, . . . , xn) for player I and
Y = (y1, . . . , ym) for player II, where

xi ≥ 0,

n∑

i=1

xi = 1 and yj ≥ 0,

m∑

j=1

yj = 1.

The components xi represent the probability that row i will be used by player I, so
xi = Prob(I uses row i), and yj the probability column j will be used by player
II, that is, yj = Prob(II uses row j). Denote the set of mixed strategies with k
components by

Sk ≡ {(z1, z2, . . . , zk) | zi ≥ 0, i = 1, 2, . . . , k,

k∑

i=1

zi = 1}.

In this terminology, a mixed strategy for player I is any element X ∈ Sn and
for player II any element Y ∈ Sm. A pure strategy X ∈ Sn is an element of
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Once column 2 is gone, row 1 may be dropped. Then X∗ = (0, 4
17 ,

13
17 ) and

Y ∗ = ( 12
17 , 0,

5
17 ).

1.23 v(A) = 1 = E(X∗, Y ∗), but E(X,Y ∗) = 2x, where X = (x, 1 − x), 0 ≤
x ≤ 1, and it is not true that 2x < v(A) for all x in that range.

1.24 (a) X∗ = ( 15
22 ,

7
22 );(b) Y ∗ = ( 7

9 ,
2
9 );(c) Y ∗ = ( 6

10 ,
4
10 ).

1.25 Any 3
8 ≤ λ ≤ 7

16 will work for a convex combination of columns 2 and 1.

1.26 Let maxi bi = bk. Then
∑

i xibi − bk =
∑

i xi(bi − bk) = z since
∑

i xi = 1.
Now bi ≤ bk for each i, so z ≤ 0. Its maximum value is achieved by taking xk = 1
and xi = 0, i 6= k. Hence maxX

∑

i xibi − bk = 0, which says maxX

∑

i xibi =
bk = maxi bi.

1.27 This uses v = minY maxiE(i, Y ) = maxX minj E(X, j).

1.28 By definition of saddle

E(X0, Y ∗) ≤ E(X∗, Y ∗) ≤ E(X∗, Y 0)

and
E(X∗, Y 0) ≤ E(X0, Y 0) ≤ E(X0, Y ∗).

Now put them together.

1.29 (a) The given strategies in the first part are not optimal because maxiE(i, Y ) =
31
9 and minj E(X, j) = − 42

9 .
(b) The optimal Y ∗ is Y ∗ = ( 52

99 ,
8
33 , 0,

23
99 ).

1.30 Y ∗ = ( 5
7 ,

2
7 , 0).

1.31 X∗ = ( 8
11 ,

3
11 ), Y ∗ = ( 6

11 ,
5
11 ), v(A) = 48

11 .

1.32 X∗ = ( 2
3 ,

1
3 ), Y ∗ = ( 2

3 ,
1
3 , 0, 0), v(A) = 4

3 .The best response for player I to
Y = ( 1

4 ,
1
2 ,

1
8 ,

1
8 ) is X = (0, 1).

1.33 Since XA = (0.28, 0.2933, 0.27), the smallest of these is 0.27, so the best
response is Y = (0, 0, 1).

1.34 Best responses are x(y) = (C − y)/2, y(x) = (D−x)/2, which can be solved
to give x∗ = (2C −D)/3, y∗ = (2D − C)/3.

1.35 maxX E(X,Yn) = E(Xn, Yn),minY E(Xn, Y ) = E(Xn, Yn+1), n = 0, 1, 2 . . . .
Then

E(X,Yn) ≤ E(Xn, Yn) and E(Xn, Yn+1) ≤ E(Xn, Y ), ∀, X, Y.



CHAPTER 2

SOLUTION METHODS FOR MATRIX
GAMES

I returned, and saw under the sun, that the race is not to the swift, nor the battle
to the strong, ...; but time and chance happeneth to them all.

–Ecclesiates 9:11

2.1 SOLUTION OF SOME SPECIAL GAMES

Graphical methods reveal a lot about exactly how a player reasons her way to a
solution, but it is not a very practical method. Now we will consider some special
types of games for which we actually have a formula giving the value and the mixed
strategy saddle points. Let’s start with the easiest possible class of games that can
always be solved explicitly and without using a graphical method.

2.1.1 2 × 2 Games Revisited

We have seen that any 2× 2 matrix game can be solved graphically, and many times
that is the fastest and best way to do it. But there are also explicit formulas giving the

Game Theory: An Introduction, First Edition. By E.N. Barron
Copyright c© 2008 John Wiley & Sons, Inc.
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value and optimal strategies with the advantage that they can be run on a calculator
or computer. Also the method we use to get the formulas is instructive because it
uses calculus.

Each player has exactly two strategies, so the matrix and strategies look like

A =

[
a11 a12

a21 a22

]

player I :X = (x, 1 − x); player II :Y = (y, 1− y).

For any mixed strategies we have E(X,Y ) = XAY T , which, written out, is

E(X,Y ) = xy(a11 − a12 − a21 + a22) + x(a12 − a22) + y(a21 − a22) + a22.

Now here is the theorem giving the solution of this game.

Theorem 2.1.1 In the 2 × 2 game with matrix A, assume that there are no pure
optimal strategies. If we set

x∗ =
a22 − a21

a11 − a12 − a21 + a22
, y∗ =

a22 − a12

a11 − a12 − a21 + a22
,

thenX∗ = (x∗, 1− x∗), Y ∗ = (y∗, 1− y∗) are optimal mixed strategies for players
I and II, respectively. The value of the game is

v(A) = E(X∗, Y ∗) =
a11a22 − a12a21

a11 − a12 − a21 + a22
.

Remarks.
1. The main assumption you need before you can use the formulas is that the

game does not have a pure saddle point. If it does, you find it by checking v+ = v−,
and then finding it directly. You don’t need to use any formulas. Also, when we write
down these formulas, it had better be true that a11 − a12 − a21 + a22 6= 0, but if we
assume that there is no pure optimal strategy, then this must be true. In other words,
it isn’t difficult to check that when a11 − a12 − a21 + a22 = 0, then v+ = v− and
that violates the assumption of the theorem.

2. A more compact way to write the formulas and easier to remember is

X∗ =
(1 1)A∗

(1 1)A∗

[
1
1

] and Y ∗ =

A∗

[
1
1

]

(1 1)A∗

[
1
1

]

value(A) =
det(A)

(1 1)A∗

[
1
1

]

where

A∗ =

[
a22 −a12

−a21 a11

]

and det(A) = a11a22 − a12a21.
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We need to define a concept of optimal play that should reduce to a saddle point in
mixed strategies in the case B = −A. It is a fundamental and far-reaching definition
due to another genius of mathematics who turned his attention to game theory in the
middle twentieth century, John Nash.

Definition 3.1.1 A pair of mixed strategies (X∗ ∈ Sn, Y
∗ ∈ Sm) is a Nash equi-

librium if EI(X,Y
∗) ≤ EI(X

∗, Y ∗) for every mixed X ∈ Sn and EII(X
∗, Y ) ≤

EII(X
∗, Y ∗) for every mixed Y ∈ Sm. If (X∗, Y ∗) is a Nash equilibrium we denote

by vA = EI(X
∗, Y ∗) and vB = EII(X

∗, Y ∗) as the optimal payoff to each player.
Written out with the matrices, (X∗, Y ∗) is a Nash equilibrium if

EI(X
∗, Y ∗) = X∗AY ∗T ≥ XAY ∗T = EI(X,Y

∗), for every X ∈ Sn,

EII(X
∗, Y ∗) = X∗BY ∗T ≥ X∗BY T = EII(X

∗, Y ), for every Y ∈ Sm.

This says that neither player can gain any expected payoff if either one chooses
to deviate from playing the Nash equilibrium, assuming that the other player is
implementing his or her piece of the Nash equilibrium. On the other hand, if it is
known that one player will not be using his piece of the Nash equilibrium, then the
other player may be able to increase her payoff by using some strategy other than
that in the Nash equilibrium. The player then uses a best response strategy. In fact,
the definition of a Nash equilibrium says that each strategy in a Nash equilibrium
is a best response strategy against the opponent’s Nash strategy. Here is a precise
definition for two players.

Definition 3.1.2 A strategyX0 ∈ Sn is a best response strategy to a given strategy
Y 0 ∈ Sm for player II, if

EI(X
0, Y 0) = max

X∈Sn

EI(X,Y
0).

Similarly, a strategy Y 0 ∈ Sm is a best response strategy to a given strategy
X0 ∈ Sn for player I, if

EII(X
0, Y 0) = max

Y ∈Sm

EII(X
0, Y ).

In particular, another way to define a Nash equilibrium (X∗, Y ∗) is that X∗

maximizes EI(X,Y
∗) over all X ∈ Sn and Y ∗ maximizes EII(X

∗, Y ) over all
Y ∈ Sm. X

∗ is a best response to Y ∗ and Y ∗ is a best response to X∗.
If B = −A, a bimatrix game is a zero sum two-person game and a Nash equilib-

rium is the same as a saddle point in mixed strategies. It is easy to check that from
the definitions because EI(X,Y ) = XAY T = −EII(X,Y ).

Note that a Nash equilibrium in pure strategies will be a row i∗ and column j∗

satisfying

aij∗ ≤ ai∗j∗ and bi∗j ≤ bi∗j∗ , i = 1, . . . , n, j = 1, . . . ,m.
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x

y

1

1

m/M=2/5

Nash Equilibria

Nash pointNash point

Nash point

Nash point r/R=3/5

Figure 3.3 Rational reaction sets for both players

This is curious because the expected payoffs to each player are much less than
they could get at the other Nash points.

We will see pictures like Figure 3.3 again in the next section when we consider an
easier way to get Nash equilibria.

Remark: A direct way to calculate the rational reaction sets for 2× 2 games.
This is a straightforward derivation of the rational reaction sets for the bimatrix game
with matrices (A,B). Let X = (x, 1 − x), Y = (y, 1 − y) be any strategies and
define

f(x, y) = EI(X,Y ) and g(x, y) = EII(X,Y ).

The idea is to find for a fixed 0 ≤ y ≤ 1, the best response to y. Accordingly,

max
0≤x≤1

f(x, y) = max
0≤x≤1

xEI(1, Y ) + (1 − x)EI(2, Y )

= x[EI(1, Y ) −EI(2, Y )] +EI(2, Y )

=







EI(2, Y ) at x = 0 if EI(1, Y ) < EI(2, Y );
EI(1, Y ) at x = 1 if EI(1, Y ) > EI(2, Y );
EI(2, Y ) at any 0 < x < 1 if EI(1, Y ) = EI(2, Y ).

Now we have to consider the inequalities in the conditions. For example,

EI(1, Y ) < EI(2, Y ) ⇔My < m, M = a11 − a12 − a21 + a22, m = a22 − a12.

If M > 0 this is equivalent to the condition 0 ≤ y < m/M . Consequently, in the
case M > 0, the best response to any 0 ≤ y < M/m is x = 0. All remaining cases



NONLINEAR PROGRAMMING METHOD FORNONZERO SUM TWO-PERSON GAMES 145

because XJT
n = JmY

T = 1. But this is exactly what it means to be a Nash point.
This means that (X∗, Y ∗) is a Nash point if and only if

X∗AY ∗T JT
n ≥ AY ∗T , (X∗BY ∗T )Jm ≥ X∗B.

We have already seen this in Proposition 3.2.3.
Now suppose that (X∗, Y ∗) is a Nash point. We will see that if we choose the

scalars

p∗ = EI(X
∗, Y ∗) = X∗AY ∗T and q∗ = EII(X

∗, Y ∗) = X∗BY ∗T ,

then (X∗, Y ∗, p∗, q∗) is a solution of the nonlinear program. To see this, we first
show that all the constraints are satisfied. In fact, by the equivalent characterization
of a Nash point we just derived, we get

X∗AY ∗TJT
n = p∗JT

n ≥ AY ∗T and (X∗BY ∗T )Jm = q∗Jm ≥ X∗B.

The rest of the constraints are satisfied because X∗ ∈ Sn and Y ∗ ∈ Sm. In the
language of nonlinear programming, we have shown that (X∗, Y ∗, p∗, q∗) is a fea-
sible point. The feasible set is the set of all points that satisfy the constraints in the
nonlinear programming problem.

We have left to show that (X∗, Y ∗, p∗, q∗) maximizes the objective function

f(X,Y, p, q) = XAY T +XBY T − p− q

over the set of the possible feasible points.
Since every feasible solution (meaning it maximizes the objective over the feasible

set) to the nonlinear programming problem must satisfy the constraintsAY T ≤ pJT
n

and XB ≤ qJm, multiply the first on the left by X and the second on the right by
Y T to get

XAY T ≤ pXJT
n = p, XBY T ≤ qJmY

T = q.

Hence, any possible solution gives the objective

f(X,Y, p, q) = XAY T +XBY T − p− q ≤ 0.

So f(X,Y, p, q) ≤ 0 for any feasible point. But with p∗ = X∗AY ∗T , q∗ =
X∗BY ∗T , we have seen that (X∗, Y ∗, p∗, q∗) is a feasible solution of the nonlinear
programming problem and

f(X∗, Y ∗, p∗, q∗) = X∗AY ∗T +X∗BY ∗T − p∗ − q∗ = 0

by definition of p∗ and q∗. Hence this point (X∗, Y ∗, p∗, q∗) both is feasible and
gives the maximum objective (which we know is zero) over any possible feasible
solution and so is a solution of the nonlinear programming problem. This shows that
if we have a Nash point, it must solve the nonlinear programming problem.
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3.21
X1 = (1, 0) Y1 = (1, 0, 0) EI = 2, EII = 1
X2 = (1, 0) Y2 = ( 1

2 , 0,
1
2 ) EI = 1

2 , EII = 1
X3 = (0, 1) Y3 = (0, 0, 1) EI = 1, EII = 3

3.22 Take B = −A. The Nash equilibrium is X∗ = ( 5
8 ,

3
8 , 0), Y ∗ = (0, 5

8 ,
3
8 ), and

the value of the game is v(A) = 1
8 .

3.23 The objective function is f(x, y, p, q) = 7x + 7y − 6xy − 6 − p − q with
constraints 2y − 1 ≤ p, 5y − 3 ≤ p, 2x− 1 ≤ q, 5x− 3 ≤ q, and 0 ≤ x, y ≤ 1.

X1 = (1, 0) Y1 = (0, 1) EI = −1, EII = 2
X2 = (0, 1) Y2 = (1, 0) EI = 2, EII = −1
X3 = ( 2

3 ,
1
3 ) Y3 = ( 2

3 ,
1
3 ) EI = 1

3 , EII = 1
3

3.24 X1 =
(

1
2 ,

1
3 ,

1
6

)
, Y1 =

(
5
13 ,

5
13 ,

2
13

)
,EI = 10

13 , EII = 1. X2 =
(

3
4 , 0,

1
4

)
= Y2

with payoffs EI = 5
4 , EII = 3

2 . X3 = Y3 = (0, 1, 0).

3.26 The matrices are

A =










1.20 −0.56 −0.88 −1.2

1.24 −0.40 −1.44 −1.6

0.92 −0.04 −1.20 −1.8

0.6 −0.2 −0.6 −2










, B =










0.64 0.92 0.76 0.6

−0.28 0.16 −0.12 −0.2

−0.44 0.28 0.04 −0.6

−0.6 0.2 0.6 0










.

One Nash equilibrium is X = (0.71, 0, 0, 0.29), Y = (0, 0, 0.74, 0.26). So Pierre
fires at 10 paces about 75% of the time and waits until 2 paces about 25% of the time.
Bill, on the other hand, waits until 4 paces before he takes a shot but 1 out of 4 times
waits until 2 paces.

3.27 (a) The Nash equilibria are

X1 = (1, 0) Y1 = (0, 1) EI = −1, EII = 2
X2 = (0, 1) Y2 = (1, 0) EI = 2, EII = −1

X3 =
(

2
3 ,

1
3

)
Y3 =

(
2
3 ,

1
3

)
EI = 1

3 , EII = 1
3

They are all Pareto-optimal because it is impossible for either player to improve their
payoff without simultaneously decreasing the other player’s payoff, as you can see
from the figure:
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Since ~x is in the core, we have

v(N) >

n∑

i=1

v(i) =

n∑

i=1

v(N) − v(N − i) = nv(N) −
n∑

i=1

v(N − i),

=⇒

v(N)(n− 1) <
n∑

i=1

v(N − i) ≤
n∑

i=1

∑

j 6=i

xj =
n∑

i=1

v(N) − xi

= nv(N) −
n∑

i=1

xi = (n− 1)v(N) ⇒⇐ .

5.8 Since the game is inessential, v(N) =
∑n

i=1 v(i). It is obvious that ~x =
(v(1), . . . , v(n)) ∈ C(0). If there is another ~y ∈ C(0), ~y 6= ~x, there must be
one component yi < v(i) or yi > v(i). Since ~y ∈ C(0), the first possibility cannot
hold and so yi > v(i). This is true at any j component of ~y not equal to v(j). But
then, adding them up gives

∑n
i=1 yi >

∑n
i=1 v(i) = v(N), which contradicts the

fact that ~y ∈ C(0).

5.9 Suppose i = 1. Then

x1 +
∑

j 6=1

xj = v(N) = v(N − 1) ≤
∑

j 6=1

xj ,

and so x1 ≤ 0. But since −x− 1 = v(1) − x1 ≤ 0, we have x1 = 0.

5.11 Let ~x ∈ C(0). Since v(N − 1) ≤ x2 + · · · + xn = v(N) − x1, we have
x1 ≤ v(N) − v(N − 1). In general, xi ≤ v(N) − v(N − i), 1 ≤ i ≤ n. Now add
these up to get v(N) =

∑

i xi ≤
∑

i δi < v(N), which says C(0) = ∅.

5.13 The core is

C(0) = {(x1, x2, 16− x1 − x2) :
3

5
≤ x1 ≤ 13, 2 ≤ x2 ≤ 12, 5 ≤ x1 + x2 ≤ 15}.

The least core: ε1 = − 62
15 , C(ε1) =

{(
71
15 ,

92
15 ,

77
15

)}
.

5.14 q = 1
2

(
2
5 + 3

10 + 3
10

)
= 1

2 . The characteristic function is v(i) = 0, v(12) =
v(13) = v(23) = 1, v(123) = 1.

5.15 (b) To see why the core is empty, show first that it must be true x1 + x2 = −2,
and x3 + x4 = −2. Then, since −1 ≤ x1 + x2 + x3 = −2 + x3, we have x3 ≥ 1.
Similarly x4 ≥ 1. But then x3 + x4 ≥ 2 and that is a contradiction.

(c) A coalition that works is S = {12}.
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5.16 X1 = C(− 1
10 ) = {x1 + x2 = 9

10 ,
4
10 ≤ x1,

2
10 ≤ x2}. The next least core is

X2 = C(− 1
4 ) = {( 11

20 ,
7
20 ,

2
20 )}.

5.17 The least core is the set C(−1) = {x1 = 1, x2 + x3 = 11, x2 ≥ 1, x3 ≥ 2}.
The nucleolus is the single point {(1, 11

2 ,
11
2 )}

5.18 For the least core ε1 = − 1
2 :

Least core = X1 = C(−1

2
) = {x1 + x2 =

3

2
, x3 + x4 =

3

2
, xi ≥

1

2
, i = 1, 2, 3, 4,

x2 + x3 ≥ 3

2
, x1 + x4 ≥ 3

2
, x1 + x3 ≥ 5

4
, x2 + x4 ≥ 1

2
,

x1 + x2 + x3 ≥ 3

2
, x1 + x2 + x4 ≥ 3

2
, x1 + x3 + x4 ≥ 3

2
,

x2 + x3 + x4 ≥ 3

2
, x1 + x2 + x3 + x4 = 3}.

Next X2 has ε2 = 1. X3 has ε3 = 3, and nucleolus={( 3
4 ,

3
4 ,

3
4 ,

3
4 )}.

5.19 (a) The characteristic function is the number of hours saved by a coalition.
v(i) = 0, and

v(12) = 4, v(13) = 4, v(14) = 3, v(23) = 6, v(24) = 2, v(34) = 2,

v(123) = 10, v(124) = 7, v(134) = 7, v(234) = 8, v(1234) = 13.

(b) Nucleolus={( 13
4 ,

33
8 ,

33
8 ,

3
2 )} with units in hours. The least core is

X1 = C(−3

2
) = {x1 + x2 + x3 =

23

2
, x4 =

3

2
,

x1 + x2 + x3 + x4 = 13, x1 + x2 + x4 ≥ 17

2
,

x2 + x3 + x4 ≥ 19

2
, x1 ≥ 3

2
, x2 ≥ 3

2
,

x1 + x2 ≥ 11

2
, x3 ≥ 3

2
, x1 + x3 ≥ 11

2
,

x2 + x3 ≥ 15

2
, x1 + x4 ≥ 9

2
, x2 + x4 ≥ 7

2
,

x3 + x4 ≥ 7

2
, x1 + x3 + x4 ≥ 17

2
}

The next least core, which will be the nucleolus, is X2 = {( 13
4 ,

33
8 ,

33
8 ,

3
2 )} with

ε2 = 10.
(c) The schedule is set up as follows: (i) Curly works from 9:00 to 11:52.5, (ii)

Larry works from 11:52.5 to 1:45, (iii) Shemp works from 1:45 to 3:30, and (iv) Moe
works from 3:30 to 5:00.
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EXAMPLE 1.15

Let’s consider

A =







−1 2
3 −4

−5 6
7 −8







This is a 4 × 2 game without a saddle point in pure strategies since v− =
−1, v+ = 6. There is also no obvious dominance, so we try to solve the game
graphically. Suppose that player II uses the strategy Y = (y, 1 − y), then we
graph the payoffsE(i, Y ), i = 1, 2, 3, 4, as shown in Figure 1.10.

y

E(1,Y)

E(3,Y)

E(2,Y)

E(4,Y)

optimal point

Payoff to player II

Figure 1.10 Mixed for player II versus 4 rows for player I.

You can see the difficulty with solving games graphically; you have to be
very accurate with your graphs. Carefully reading the information, it appears
that the optimal strategy for Y will be determined at the intersection point of
E(4, Y ) = 7y − 8(1 − y) and E(1, Y ) = −y + 2(1 − y). This occurs at the
point y∗ = 5

9 and the corresponding value of the game will be v(A) = 1
3 . The

optimal strategy for player II is Y ∗ = ( 5
9 ,

4
9 ).

Since this uses only rows 1 and 4, we may now drop rows 2 and 3 to find the
optimal strategy for player I. In general, we may drop the rows (or columns) not
used to get the optimal intersection point. Often that is true because the unused
rows are dominated, but not always. To see that here, since 3 ≤ 7 1

2 − 1 1
2 and

−4 ≤ −8 1
2 + 2 1

2 , we see that row 2 is dominated by a convex combination
of rows 1 and 4; so row 2 may be dropped. On the other hand, there is no
λ ∈ [0, 1] so that −5 ≤ 7λ− 1(1− λ) and 6 ≤ −8λ+ 2(1− λ). Row 3 is not
dominated by a convex combination of rows 1 and 4, but it is dropped because
its payoff line E(3, Y ) does not pass through the optimal point.
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Considering the matrix using only rows 1 and 4,we now calculateE(X, 1) =
−x+7(1−x) andE(X, 2) = 2x−8(1−x) which intersect at (x = 5

6 , v = 1
3 ).

We obtain that row 1 should be used with probability 5
6 and row 4 should be

used with probability 1
6 , so X∗ = ( 5

6 , 0, 0,
1
6 ). Again, v(A) = 1

3 .

A verification that these are indeed optimal uses Theorem 1.3.7(c). We
check thatE(i, Y ∗) ≤ v(A) ≤ E(X∗, j) for all rows and columns. This gives

[
5

6
0 0

1

6

]







−1 2
3 −4

−5 6
7 −8







=

[
1

3

1

3

]

and







−1 2
3 −4

−5 6
7 −8







[
5
9
4
9

]

=








1
3

− 1
9

− 1
9
1
3







.

Everything checks.

We end this section with a simple analysis of a version of poker, at least a small
part of it.

EXAMPLE 1.16

This is a modified version of the endgame in poker. Here are the rules. Player
I is dealt a card that may be an ace or a king. Player I sees the result but II does
not. Player I may then choose to fold or bet. If I folds, he has to pay player II
$1. If I bets, player II may choose to fold or call. If II folds, she pays player I
$1. If player II calls and the card is a king, then player I pays player II $2, but
if the card comes up ace, then player II pays player I $2.

Why wouldn’t player I immediately fold when he gets dealt a king? It is the
rule that I must pay II $1 when I gets a king and he folds. Player I is hoping
that player II will fold if I bets while holding a king. This is the element of
bluffing, because if II calls while I is holding a king, then I must pay II $2.
Figure 1.11 is a graphical representation of the game.

Now player I has four strategies: FF =fold on ace and fold on king,
FB=fold on ace and bet on King, BF =bet on ace and fold on king, and
BB =bet on ace and bet on king. Player II has only two strategies, namely,
F =fold or C =call.

Assuming that the probability of being dealt a king or an ace is 1
2 we may

calculate the expected reward to player I and get the matrix as follows:

I/II C F

FF −1 −1

FB − 3
2

0

BF 1
2

0

BB 0 1

.
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ball, while II anticipates where the ball will be hit. Suppose that II can return a ball
hit right 90% of the time, a ball hit left 60% of the time, and a ball hit center 70% of
the time. If II anticipates incorrectly, she can return the ball only 20% of the time.
Score a return as +1 and not return as −1. Find the game matrix and the optimal
strategies.

2.3 SYMMETRIC GAMES

Symmetric games are important classes of two-person games in which the players
can use the exact same set of strategies and any payoff that player I can obtain using
strategy X can be obtained by player II using the same strategy Y = X . The two
players can switch roles. Such games can be quickly identified by the rule that
A = −AT . Any matrix satisfying this is said to be skew symmetric. If we want the
roles of the players to be symmetric, then we need the matrix to be skew symmetric.

Why is skew symmetry the correct thing? Well, ifA is the payoff matrix to player
I, then the entries represent the payoffs to player I and the negative of the entries, or
−A represent the payoffs to player II. So player II wants to maximize the column
entries in −A. This means that from player II’s perspective, the game matrix must be
(−A)T because it is always the row player by convention who is the maximizer; that
is, A is the payoff matrix to player I and −AT is the payoff to player II. So, if we
want the payoffs to player II to be the same as the payoffs to player I, then we must
have the same game matrices for each player and so A = −AT . If this is the case,
the matrix must be square, aij = −aji, and the diagonal elements of A, namely, aii,
must be 0. We can say more. In what follows it is helpful to keep in mind that for
any appropriate size matrices (AB)T = BTAT .

Theorem 2.3.1 For any skew symmetric game v(A) = 0 and if X∗ is optimal for
player I, then it is also optimal for player II.

Proof. Let X be any strategy for I. Then

E(X,X) = X A XT = −X AT XT = −(X AT XT )T = −X A XT = −E(X,X).

ThereforeE(X,X) = 0 and any strategy played against itself has zero payoff.
Let (X∗, Y ∗) be a saddle point for the game so that E(X,Y ∗) ≤ E(X∗, Y ∗) ≤

E(X∗, Y ), for all strategies (X,Y ). Then for any (X,Y ), we have

E(X,Y ) = X A Y T = −X AT Y T = −(X AT Y T )T = −Y A XT = −E(Y,X).

Hence, from the saddle point definition, we obtain

E(X,Y ∗) = −E(Y ∗, X) ≤ E(X∗, Y ∗) = −E(Y ∗, X∗) ≤ E(X∗, Y ) = −E(Y,X∗).

Then

−E(Y ∗, X) ≤ −E(Y ∗, X∗) ≤ −E(Y,X∗) =⇒
E(Y ∗, X) ≥ E(Y ∗, X∗) ≥ E(Y,X∗).
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But this says that Y ∗ is optimal for player I and X∗ is optimal for player II and also
that E(X∗, Y ∗) = −E(Y ∗, X∗) =⇒ v(A) = 0. �

EXAMPLE 2.5

General Solution of 3×3 Symmetric Games. For any 3×3 symmetric game
we must have

A =





0 a b
−a 0 c
−b −c 0



 .

Any of the following conditions gives a pure saddle point:

1. a ≥ 0, b ≥ 0 =⇒ saddle at (1, 1) position,

2. a ≤ 0, c ≥ 0 =⇒ saddle at (2, 2) position,

3. b ≤ 0, c ≤ 0 =⇒ saddle at (3, 3) position.

Here’s why. Let’s assume that a ≤ 0, c ≥ 0. In this case if b ≤ 0 we get
v− = max{min{a, b}, 0,−c} = 0 and v+ = min{max{−a,−b}, 0, c} = 0,
so there is a saddle in pure strategies at (2, 2). All cases are treated similarly.
To have a mixed strategy, all three of these must fail.

We next solve the case a > 0, b < 0, c > 0 so there is no pure saddle and
we look for the mixed strategies.

Let player I’s optimal strategy be X∗ = (x1, x2, x3). Then

E(X∗, 1) = −ax2 − bx3 ≥ 0 = v(A)

E(X∗, 2) = ax1 − cx3 ≥ 0

E(X∗, 3) = bx1 + cx2 ≥ 0

Each one is nonnegative since E(X∗, Y ) ≥ 0 = v(A), for all Y. Now, since
a > 0, b < 0, c > 0 we get

x3

a
≥ x2

−b ,
x1

c
≥ x3

a
,

x2

−b ≥ x1

c

so
x3

a
≥ x2

−b ≥ x1

c
≥ x3

a
,

and we must have equality throughout. Thus, each fraction must be some
scalar λ, and so x3 = a λ, x2 = −b λ, x1 = c λ. Since they must sum to
one, λ = 1/(a − b + c). We have found the optimal strategies X∗ = Y ∗ =
(c λ,−b λ, a λ). The value of the game, of course is zero.

For example, the matrix

A =





0 2 −3
−2 0 3

3 −3 0
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tree, which is nothing more than a picture of what happens at each stage of the
game where a decision has to be made.

The numbers at the end of the branches are the payoffs to player I. The
number 1

2 , for example, means that the net gain to player I is $500 because
player II had to pay $1000 for the ability to pass and they split the pot in this
case. The circled nodes are spots at which the next node is decided by chance.
You could even consider Nature as another player. We analyze the game by
first converting the tree to a game matrix which, in this example becomes

I/II II1 II2 II3 II4

I1
1

4

1

4
−

1

36
−

1

36

I2 −
3

2
0 −

3

2
0

To see how the numbers in the matrix are obtained, we first need to know
what the pure strategies are for each player. For player I, this is easy because
she makes only one choice and that is pass (I2) or spin (I1). For player II, II1
is the strategy; if I passes, then spin, but if I spins and survives, then pass. So,
the expected payoff 2 to I is

I1 against II1 :
5

6

(
1

2

)

+
1

6
(−1) =

1

4
, and

I2 against II1 :
5

6
(−2) +

1

6
(1) = −3

2
.

Strategy II3 says the following: If I spins and survives, then spin, but if I passes,
then spin and fire. The expected payoff to I is

I1 against II3 :
5

6

(
5

6
(0) +

1

6
(1)

)

+
1

6
(−1) = − 1

36
, and

I2 against II3 :
5

6
(−2) +

1

6
(1) = −3

2
.

The remaining entries are left for the reader. The pure strategies for player II
are summarized in the following table.

II1 If I2, then S; If I1, then P.
II2 If I2, then P; If I1, then P.
II3 If I1, then S; If I2, then S.
II4 If I1, then S; If I2, then P.

2This uses the fact that if X is a random variable taking values x1, x2, . . . , xn with probabilities
p1, p2, . . . , pn, respectively, then EX =

∑n
i=1 xipi. In I1 against II1, X is 1

2
with probability 5

6
and

−1 with probability 1
6

. See the appendix for more.
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This is actually a simple game to analyze because we see that player II will
never play II1, II2, or II4 because there is always a strategy for player II in
which II can do better. This is strategy II3, which stipulates that if I spins and
survives the shot, then II should spin, while if I passes, then II should spin and
shoot. If I passes, II gets 1

36 and I loses − 1
36 . If I spins and shoots, then II

gets 3
2 and I loses − 3

2 . The larger of these two numbers is − 1
36 , and so player I

should always spin and shoot. Consequently, player II will also spin and shoot.
The dotted line in Figure 1.3 indicates the optimal strategies. The key to

these strategies is that no significant value is placed on surviving.

Remark. Extensive form games can take into account information that is available
to a player at each decision node. This is an important generalization. Extensive
form games are a topic in sequential decision theory, a second course in game theory.

Finally, we present an example in which is it clear that randomization of strategies
must be included as an essential element of games.

EXAMPLE 1.6

Evens or Odds. In this game, each player decides to show one, two, or three
fingers. If the total number of fingers shown is even, player I wins +1 and
player II loses −1. If the total number of fingers is odd, player I loses −1, and
player II wins +1. The strategies in this game are simple: deciding how many
fingers to show. We may represent the payoff matrix as follows:

Evens Odds
I/II 1 2 3
1 1 −1 1
2 −1 1 −1
3 1 −1 1

The row player here and throughout this book will always want to
maximize his payoff, while the column player wants to minimize the payoff to
the row player, so that her own payoff is maximized (because it is a zero sum
game). The rows are called the pure strategies for player I, and the columns
are called the pure strategies for player II.

The following question arises: How should each player decide what number
of fingers to show? If the row player always chooses the same row, say, one
finger, then player II can always win by showing two fingers. No one would
be stupid enough to play like that. So what do we do? In contrast to 2× 2 Nim
or Russian roulette, there is no obvious strategy that will always guarantee a
win for either player.

Even in this simple game we have discovered a problem. If a player always
plays the same strategy, the opposing player can win the game. It seems


