
FOCK REPRESENTATIONS

RYAN GRADY

In this note we use Clifford algebras and their Fock representations to build representations

of LU(N) and LSU(N). Let H be the Hilbert space of square-integrable sections of the

trivial rank N complex vector bundle over S1 and P : H → H the projection onto the space

spanned by non-negative Fourier modes. To this data we can associate the Fermionic Fock

space FP . FP is a representation of level 1 of LU(N). It turns out that all positive energy

representations LSU(N) at level l are contained in the Fermionic representation F⊗lP .

1. Clifford Algebras and Fock Representations

1.1. The Clifford Algebra. Let (H, 〈 , 〉) be a complex Hilbert space, the complex Clifford

algebra C(H) is the unital ∗-algebra generated by a complex linear map f 7→ c(f) for f ∈ H
satisfying the anticommutation relations

c(f)c(g) + c(g)c(f) = 0

and

c(f)c(g)∗ + c(g)∗c(f) = 〈f, g〉.

Note that we can realize C(H) explicitly by

C(H) = T (H)/(f ⊗ f − 〈f, f〉).

The Clifford algebra has a natural action on ΛH given by π(c(f))ω = f ∧ ω, the com-

plex wave representation. Let Ω = 1 ∈ Λ0H be the vacuum vector, which is cyclic. The

annhilation action a(f) = c(f)∗ is given by annhilating Ω and on decomposables by

a(f)(ω0 ∧ · · · ∧ ωn) =
n∑
j=0

(−1)j〈ωj, f〉ω0 ∧ · · · ∧ ω̂j ∧ · · · ∧ ωn.

Annhilation and creation really are adjoint with respect to the the inner product

〈ω0 ∧ · · · ∧ ωn, η0 ∧ · · · ∧ ηn〉 = Det[〈ωi, ηj〉].

Proposition 1.1. The wave representation is irreducible.

Proof. Let T ∈ End(ΛH) commuting with all a(f)’s, so for each f ∈ H

a(f)TΩ = Ta(f)Ω = 0,
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hence TΩ = λΩ for some λ ∈ C as

∩f∈H ker a(f) = ΩC.

Indeed if ζ ∈ ∩ ker a(f) then

〈ζ, f0 ∧ · · · ∧ fm〉 = 〈a(f0)ζ, f1 ∧ · · · ∧ fm〉 = 0,

and by linearity ζ is orthogonal to all elements
⊕

n>0 Λn(H) and hence lies in Λ0(H) = ΩC.

Now if T also commutes with all c(f)’s, then T = λI as Ω is cyclic for the c(f)’s. �

1.2. Unitary Structures. Now, let (V, (, )) be a real Hilbert space of dimension other than

odd (i.e. even or infinite). A unitary structure on V is J ∈ O(V ) such that J2 = −I. We

use J to make V into a complex vector space (iv = J(v)) equipped with a Hermitian inner

product which we will denote by (VJ , 〈 , 〉) where

〈v, w〉 = (v, w) + i(v, J(w)).

We can use unitary structures to get more irreducible representations of Clifford algebras.

Given a unitary structure J , define

PJ =
1

2
(I − iJ) ∈ End(V ⊗R C).

Let H be the Hilbert space V ⊗R C with inner product

〈x⊗ µ, y ⊗ ν〉 = (x, y)µν.

As J2 = −I, we deduce that PJ is a projection operator. Denote by FJ = PJH, which is

also the +i eigenspace of J .

The above discussion is symmetric in the sense that if P is a projection on a C-vector

space such that P + ΣPΣ = I, where Σ denotes complex conjugation, then

J = i(2P − I)

defines a unitary structure on V .

Given a PJ as above define the fermionic Fock space FP = ΛPJH⊗̂Λ(P⊥J H)∗. C(VJ) acts

irreducibly by πJ(c(f)) = c(Pf) + c((P⊥f)∗)∗. In terms of FJ we define F(FJ) = Λ(F J)

and complete with respect to the induced inner product F J ⊂ V . v ∈ L acts via creation

and v ∈ L acts via annhilation. These two notions agree, despite our insistence on different

notation.

I. Segal-Shale Equivalence Criterion. If J and K are unitary structures on V , then the

following are equivalent:

(1) the Fock representations πJ and πK are unitarily equivalent;

(2) the difference PK − PJ is a Hilbert-Schmidt operator;
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(3) the composite linear operator

FK ⊂ V → F J

is Hilbert-Schmidt.

Proof.

(2)⇒ (3): this is immediate as the operator can be identified with (PK − PJ)|FK
.

(3)⇒ (2): the claim follows as

PK − PJ = (I − PJ)PK − PJ(I − PK)

= (I − PJ)PK − Σ(I − PJ)PKΣ

and (I − PJ)PK is zero on FK
def
= ΣFK and restricts to FK as the operator FK → F J as in

(3).

(2)⇒ (1) (the converse is also true, but we don’t give the proof):

• If the representations are finite then they are equivalent to ΛH, so we may assume

that they are infinite dimensional.

• T def
= (PK − PJ)2 is compact, so by the spectral theorem

H =
⊕
λ≥0

Hλ

and PK = PJ on H0.

• T commutes with both PK and PJ , so the Hλ are invariant under PK and PJ . We

can therefore further decompose H into

H =
⊕
j

Vj

where Vj are finite dimensional irreducible submodules for PK and PJ which are also

eigenspaces for T .

• For any j, PK and PJ (and I) generate End(Vj), so dim End(Vj) ≤ 4 and therefore

dimVj = 1 or 2.

• We can choose an orthonormal basis (ei)i≥−a for P⊥KH with each ei in some Vj and

P⊥J e−1 = · · · = P⊥J e−a = 0 and P⊥J ei 6= 0

for i ≥ 0. We complete to an orthonormal basis of H by adding vectors from the

Vj’s.

• Let (fl)k≥−b be an orthonormal basis for P⊥J H such that fl ∈ Vj 3 el if l ≥ 0 and

〈el, fl〉 > 0.

• If Vj is a λi-eigenspace for T and el and fl ∈ Vj, then 〈el, fl〉 =
√

1− λi.
• ‖PK − PJ‖2

2 = TrT = a+ b+ 2
∑
λi, so in particular

∑
λi <∞.
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• We now build a representation of C(V ) that intertwines the representations πK and

πJ . Let H be the Hilbert space with orthonormal basis given by symbols ei1∧ei2∧· · ·
where i1 < i2 < · · · and ik+1 = ik + 1 for k large. Then π(c(f)) = f∧ yields a

representation of C(V ).

• Define the cyclic vector ξ ∈ H by

ξ = e−a ∧ e−a+1 ∧ · · · .

• 〈π(a)ξ, ξ〉 = 〈πK(a)ΩK ,ΩK) and U(πK(a)ΩK)
def
= π(a)ξ defines a unitary from FPK

onto H such that π(a) = UπK(a)U∗ for some unitary U ∈ U(FPK
).

• To complete the proof it is enough to find η ∈ H such that

〈π(a)η, η〉 = 〈πJ(a)ΩJ ,ΩJ〉.

• Define

ηN = f−b ∧ · · · ∧ f−1 ∧ f0 ∧ · · · fN ∧ eN+1 ∧ eN+2 ∧ · · · .

It is clear that for a ∈ C(V ) there exists an N large enough (depending on a) such

that

〈π(a)ηN , ηN〉 = 〈πJ(a)ΩJ ,ΩJ〉.

Hence we need to show that the sequence {ηN} has a limit.

• {ηN} is a Cauchy sequence. Indeed,

〈ηN , ηM〉 =
N∏

i=M+1

(ei, fi) =
N∏

i=M+1

√
1− λi

and as
∑
λi <∞, Re〈ηN , ηM〉 → 1 as M ≤ N →∞.

�

2. Implementation and the Basic Representation

Let u ∈ U(VJ), then u yields an automorphism of C(V ) via c(f) 7→ c(uf). An automor-

phism is said to be implemented in πJ (or FP ) if πJ(c(uf)) = UπJ(c(f))U∗ for some unitary

U ∈ U(FP ) unique up to a phase (i.e. φ ∈ C).

Proposition 2.1. u is implemented in FP if [u, P ] is Hilbert-Schmidt.

Proof. Let Q = u∗PJu, for J a unitary structure and let K be the unitary structure corre-

sponding to Q. Then πJ(c(uf)) = πK(c(f)) = UπJ(c(f))U∗, where the last equality follows

from the equivalence criterion. �

Define the restricted unitary group UP (VJ) = {u ∈ U(VJ) : [u, P ] Hilbert-Schmidt}, it is a

topological group under the strong operator topology and the Hilbert-Schmidt norm. By the

above corollary, there is a homomorphism π : UP (VJ)→ PU(FP ), called the basic projective

representation.
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Lemma 2.2. The basic representation is continuous.

Recall that it is enough to verify the above lemma at the identity, i.e. if un
s−→ I and

‖[un, P ]‖2 → 0, then there exists lifts Un ∈ U(FP ) of π(un) such that Un
s−→ I.

Note that if [u, P ] = 0, then u is canonically implemented in FP (i.e. we actually have a

unitary action) and we refer to this as canonical quantization. Similarly if uPu∗ = I − P
then u is canonically implemented by a conjugate-linear isometry in FP again called canonical

quantization.

3. Relation to CFT

In [2], Segal associates to a Lie group G and level ` ∈ H4(BG; Z) a weakly conformal field

theory. We now describe this construction.

We need to associate to each closed one manifold equipped with a label a vector space

and to each surface with boundary a finite dimensional vector space built from the boundary

vector spaces. Labels in this context correspond to positive energy representations of LG at

level `. Let E denote the field theory, then E(S1, ρ) = Vρ.

Let Y0
Σ−→ Y1 be a bordism with boundary components equipped with labels. Let N(Yi)

be a tubular neighborhood in Σ, then we have a restriction map

Hol(Σ, GC)→ Hol(N(Y0), GC)× Hol(N(Y1), GC).

We have a natural (projective) action of Map(Y0, G) ×Map(Y1, G) on the vector space VΣ,

where

VΣ =
⊗

ρ∈Labels(Y0)

V ∨ρ ⊗
⊗

η∈Labels(Y1)

Vη.

Via the two maps Hol(N(Yi), GC)→ Map(Yi, G), we get an action of Hol(Σ, GC) on VΣ, then

define

E(Σ) = V (Σ)Hol(Σ,GC).

It turns out that this fixed subspace is finite dimensional and further there is an n ∈ Z, such

that

E(Σ) = E ′(Σ)⊗Det⊗n(Σ).

The E ′(Σ) corresponds to a three dimensional TFT, namely Chern-Simons.

It is of note that in order to see the fusion of PERs on the CFT side, one must be able to

extend Chern-Simons to points.

3.1. The Action of LU(N). Define H = L2(S1) ⊗ CN , and P : H → H≥0 the projec-

tion onto the Hardy space. For f ∈ C∞(S1,End(CN)), let m(f) denote the corresponding

multiplication operator. One can check that

‖[P,m(f)]‖2 ≤ ‖f ′‖2.
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So LU(N) satisfies the quantization criterion and we get a projective representation of

LU(N) on FP which is continuous for the subspace topology LU(N) ⊂ C∞(S1,End(V )).

Similarly, there is a continuous projective representation of LSU(N) on FP .

Let G = U(N) and 1 = ` ∈ H4(BU(N),Z) ∼= Z. Let ρ be such that E(S1, ρ) = FP .

Consider the disk Σ as a bordism from ∅ to (S1, ρ), we then have

V Hol(Σ,GL(N))
ρ = V

H≥0
ρ = ΩC,

where Ω = 1 ∈ Λ0(PH) ⊂ FP is the vacuum vector.

3.2. The Rot S1 Action. The rotation group Rot S1 acts on LU(N) (or any LG) by

(rαf)(θ) = f(θ + α). Similarly, Rot S1 acts in a unitary fashion on H = L2(S1) ⊗ CN

which leaves H≥0 invariant, hence this action is canonically quantized. As a result we

get a projective representation of LU(N) o Rot S1 on FP which restricts to an honest

representation on Rot S1. The spectral decomposition of this Rot S1 action gives the energy

grading.

3.3. The Diff(S1) Action. Consider the subgroup of Diff(S1) which extend to the disk in

a way that preserves the conformal structure. This group (or rather its double cover) is

SU±(1, 1) which can be described explicitly by

SU±(1, 1) =

{(
α β

β α

)
: |α|2 − |β|2 = ±1

}
.

Let SU+(1, 1) denote the elements which preserve orientation i.e. have determinant 1. Note

that SU−(1, 1) is a coset of SU+(1, 1) with representative F =

(
0 −1

−1 0

)
. The action of

SU±(1, 1) on S1 is given by

g(z) =
αz + β

βz + α
,

which leads to a unitary action on H via

(Vg · f)(z) =
f(g−1(z))

(α− βz)
.

For |z| < 1 and |α| > |β| (α−βz)−1 is holomorphic, so for each g ∈ SU+(1, 1), Vg commutes

with the projection P and hence the action is canonically quantized. Note that (VF ·f)(z) =

z−1f(z−1), so FPF = I − P and hence F is canonically implemented in FP by a conjugate

linear isometry fixing the vacuum vector. We thus have an orthogonal representation of

SU±(1, 1) for the underlying real inner product on FP , with SU+(1, 1) preserving the complex

structure and SU−(1, 1) reversing it. The same is true in F⊗`P .
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3.4. The Charge Grading. Consider the constant loops U(1) ⊂ LU(1) sitting inside of

LU(N) via the diagonal embedding. This action is given by multiplication by z on H, the

action is canonically quantized and we let Uz denote the operator on Fp corresponding to

z ∈ U(1). Note that this U(1) action gives the usual grading of the (non-completed) exterior

algebra ΛPH and the inverted grading on Λ(P⊥H)∗, the total grading on FP is called the

charge grading, i.e. ω ∈ ΛpPH ⊗ Λq(P⊥H)∗ has charge p − q. The Z/2-grading on Fp is

given by U−1 eigenspaces.

Lemma 3.1. Let z ∈ U(1), then for all g ∈ LSU(N), π(g)Uzπ(g)∗ = Uz. That is, the

LSU(N) action is compatible with the charge grading.

Corollary 3.2. The operator π(g) is even (i.e. commutes with U−1) for all g ∈ LSU(N).

4. Functoriality of the Fock Representation

Note the notation has changed, in what follows F (L) represents FP , where L = PV . The

language of generalized lagrangians is more amenable to what follows and hence the change

in notation.

Symplectic reduction is a quotient construction for symplectic vector spaces. Let (V, ω)

be a symplectic vector space, i.e. ω is a non-degenerate, skew-symmetric, bilinear form. For

a subspace U ⊂ V , the annhilator U⊥ is defined by

U⊥ := {v ∈ V : ω(v, u) = 0 for all u ∈ U}.

A subspace U ⊂ V is isotropic if U ⊆ U⊥. Given an isotropic subspace U ⊂ V we produce a

new symplectic vector space (W, η) called the symplectic reduction of (V, ω). (W, η) is defined

as

W := U⊥/U with symplectic form η([u1], [u2]) := ω(u1, u2).

It is easy to see that dimW = dimV − 2 dimU . Further, if L ⊂ V is a Lagrangian, then we

get a Lagrangian Lred, where

Lred :=
(
L ∩ U⊥

)
/(L ∩ U).

We would like to view the assignments V 7→ C(V ) and L 7→ F (L) as a functor. The

objects of the domain category are complex Hilbert spaces with involutions and morphisms

from V1 to V2 are Lagrangian subspaces of V2⊕−V1. Given two morphisms L1 and L2 which

we visualize as

V1
L1−→ V2

L2−→ V3

we want to form their composition which is a Lagrangian of V3⊕−V1. This is accomplished

via symplectic reduction of the Lagrangian

L = L2 ⊕ L1 ⊂ V3 ⊕−V2 ⊕ V2 ⊕−V1
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with regards to the isotropic subspace

U = {(0, v2, v2, 0)|v2 ∈ V2} ⊂ V3 ⊕−V2 ⊕ V2 ⊕−V1.

Indeed this yields the desired result as U⊥/U ∼= V3 ⊕−V1.

The range category of our potential functor is that of Z/2-graded algebras. Explicitly, the

objects of this category are Z/2-graded algebras and the morphisms are pointed, graded bi-

modules. The composition of a pointed B-A-bimodule (M,m0) and a pointed C-B-bimodule

(N, n0) is the pointed C-A-bimodule (N ⊗B M,n0 ⊗m0). If C(V ) generates a Type I von

Neumann algebra in B(F (L)), then the Clifford algebra and Fock space construction is a lax

functor (see [3]). In the case that C(V ) is not of Type I, we need to use Connes’ Fusion.
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