TRANSPORT FORMULA, CONNES FUSION WITH THE VECTOR REPRESENTATION

SPEAKER: ANDRÉ HENRIQUES TYPIST: EMILY PETERS

ABSTRACT. Notes from the "Conformal Field Theory and Operator Algebras workshop," August 2010, Oregon.

Recall a formula from Scott's talk, of the form

$$\phi\circ\phi=\sum c\phi\circ\phi$$

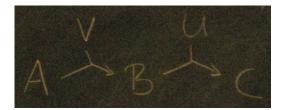
with indices of the ϕ s switched around.

Here's a finite-dimensional analogy:

We need 5 irreps of SU(N), A, B, C, U, V. U and V are miniscule, meaning $V_{[k]} = \wedge^k \mathbb{C}^N$ for some k. This means $\operatorname{Hom}(-\otimes V, -)$ is at most one dimensional (recall Pieri rule from earlier today).

Once and for all, fix a basis vector $\phi_{X,Y}^V$ of $\operatorname{Hom}(X \otimes V, Y)$.

 $\operatorname{Consider}$



It is an element in

$$\operatorname{Hom}(A \otimes V \otimes U, C) = \operatorname{Hom}(A \otimes U \otimes V, C)$$

Date: August 20, 2010.

Available online at http://math.mit.edu/~eep/CFTworkshop. Please email eep@math.mit.edu with corrections and improvements!

(this uses the fact that the cat of SU(N) reps has a symmetric braiding). And

$$\operatorname{Hom}(A \otimes U \otimes V, C) = \bigoplus_{B'} \operatorname{Hom}(A \otimes U, B') \otimes \operatorname{Hom}(B' \otimes V, C)$$

Assume our index set contains only those B^\prime which make a non-zero contribution.

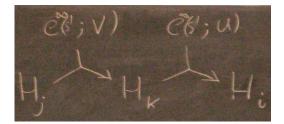
Say our original element is $\phi_{CB}^U \circ \phi_{BA}^V$; elements in the direct sum are of the form $\phi_{B'A}^V \otimes \phi_{CB'}^V$.

If I'm given elements $v \in V$, $u \in U$, I have

$$\phi^{U}_{CB}(u)\phi^{V}_{BA}(v) = \sum_{B'} c_{BB'}\phi^{V}_{CB'}(v)\phi^{U}_{B'A}(u)$$

which is an equation in Hom(A, C).

We now do the same thing for primary fields. We have H_i, H_j, H_k and instead of U, V we'll have C^{∞} functions to U or V.



Given $a \in C^{\infty}(S^1, U)$ and $b \in C^{\infty}(S^1, V)$ with disjoint support (and disjoint from $\{1\}$), we get

$$\phi_{ik}^{U}(a)\phi_{kj}^{V}(b) = \sum_{k'} c_{kk'}\phi_{ik'}^{V}(b)\phi_{k'j}^{U}(a).$$

What's important is that we have complete control over which $c_{kk'}$ are and aren't zero, since we have a formula of the form

$$c_{kk'} = \frac{\prod \Gamma(\cdots) \prod \Gamma(\cdots)}{\prod \Gamma(\cdots) \prod \Gamma(\cdots)}$$

Now, if a and b were delta functions, this would be a solution of the KZ-equation. As it is, it's a smeared solution to the KZ-equation.

Goal: we want to understand $H_{\Box} \boxtimes H_f$; we expect it to be the direct sum over g obtained by adding one box to f. This isn't going to be quite enough; as H_{\Box} doesn't generated the fusion ring, we also need to understand $H_{[k]} \boxtimes H_f$.

This is done with similar techniques and is twice as technical; Wasserman does it, but we won't.

 $H_{\Box} \boxtimes H_f$ is a completion of $\operatorname{Hom}_{L_{I'}G}(H_0, H_{\Box}) \otimes H_0 \otimes \operatorname{Hom}_{L_{I}G}(H_0, H_f)$. This (minus the H_0) is what Yoh talked about. It's also a completion of

$$\operatorname{Hom}_{L_{t'}G}(H_0, H_{\Box}) \otimes H_f$$

– this is the nonsymmetric version of Connes fusion. This is where we're going to work.

Given
$$a \in L^2(I, V)$$
 ($V = \mathbb{C}^N = V_{\Box}$)), you get $a_{\Box 0} = \phi_{\Box 0}^{\Box}(a) \in \operatorname{Hom}_{L_{I'}G}(H_0, H_{\Box})$

Given $h \in L_I G$ you get $\pi_{\Box}(h) \in \operatorname{Hom}_{L_I G}(H_{\Box}, H_{\Box})$

Elements of the form $x = \sum_n \pi_{\Box}(h^n) a_{\Box\Box}^n$ are dense in $Hom(H_n, H_{\Box})$.

Goal: We simplify our lives and look just at $x = a_{\Box 0}, y \in H_f$. We want to compute the norm of $x \otimes y \in H_{\Box} \boxtimes H_f$.

By definition,

$$\begin{split} \|x \otimes y\|^2 &= \langle x^* x y, y \rangle \\ &= \langle \pi_f(x^* x) y, y \rangle \end{split}$$

(Note this middle term doesn't really make sense, but we make sense of it by:) $x^*x \in \operatorname{Hom}_{\mathcal{A}(I')}(H_0, H_0) = \mathcal{A}(I)$ by Haag duality. This $\mathcal{A}(I)$ acts everywhere

Theorem 0.1. Technical theorem (transport formula) [W]:

 $\pi_f(a_{\square 0}^* a_{\square 0}) \sum_{g=f+\square \ permissible} \lambda_g a_{gf}^* a_{gf} \ with \ all \ \lambda_g > 0.$

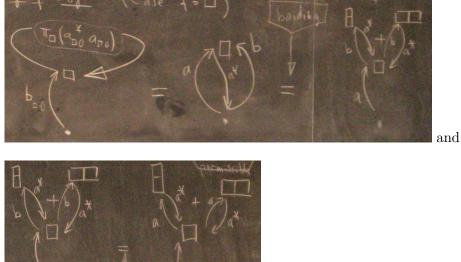
Showing that $\lambda_g \geq 0$ isn't bad; showing they're not = 0 is the hard part.

Proof. Sketch:

f = 0 is easy, equality on both sides.

What about $f = \Box$? $\pi_{\Box}(a_{\Box 0}^* a_{\Box 0})$ takes H_{\Box} back to itself. Let's precompose now with a map from the trivial to the box rep: $b_{\Box 0}$.

First, we rewrite it with a^* and a separated. By the braiding we have the second and third equalities.



This is true for all b. By denseness it follows more generality. Non-zeroness follows from non-zeroness of braiding things, which we already knew.

Now back to our computation:

$$\begin{aligned} \|x \otimes y\|^2 &= \langle x^* xy, y \rangle \\ &= \langle \pi_f(x^* x)y, y \rangle \\ &= \sum_{g=f+\Box} \lambda_g \langle a^*_{gf} a_{gf}y, y \rangle \\ &= \sum_{g=f+\Box} \langle \sqrt{\lambda_g} a_{gf}y, \sqrt{\lambda_g} a_{gf}y \rangle \end{aligned}$$

Conclusion. $H_{\Box} \boxtimes H_f \to \bigoplus_{g=f+\Box} H_g$ given by $x \otimes y \mapsto \bigoplus \sqrt{\lambda_g} a_{gf} y$ is an isometry; it's also surjective, since $\lambda_g > 0$, so therefore is an isomorphism.