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Abstract. Notes from the “Conformal Field Theory and Operator Al-
gebras workshop,” August 2010, Oregon.

The talk will have three main parts:

(1) define & motivate positive energy representations;
(2) projective representations & central extensions;
(3) reducing questions to the loop algebra.

Throughout the talk, G denotes a compact connected Lie group and T the
circle as a group.

1. Positive energy representations

At first acquaintance, the definition of positive energy representation prob-
ably seems a little weird and unmotivated. We’ll get the awkward introduc-
tion to them out the way before explaining why we’ll be spending so much
time with PERs this week.

Definition. A positive energy representation (PER) of LG is a topological
vector space E with:

(1) a projective representation LG→ PU(E), meaning that for γ ∈ LG
you can choose Uγ ∈ GL(E) (not continuously) and then UγUγ′ =
cγγ′Uγγ′ , where cγγ′ ∈ C∗;

(2) an intertwining action of T, so that Rθ, the operator for θ ∈ T on
E, satisfies RθUγR

−1
θ = URθγ ;
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(3) under the weight decomposition of E by T,1

E =
⊕
n∈Z

E(n),

with T acting by einθ on E(n), we have{
E(n) = 0, n < 0,

dimE(n) <∞, n ≥ 0.

This is known as the positive energy condition.

1.1. Concrete examples. Ryan’s talk provides the crucial example of a
PER for this week and he’s already verified the relevant properties. Let
G = SU(n), V = Cn the standard representation, H = L2(S1, V ), and
P : H → H projection onto non-negative Fourier modes. Then the fermionic
Fock space

FP = Λ(PH)⊗̂Λ(P⊥H)∗

is a positive-energy representation. In fact, this is a level one representation,
and (FP )⊗` is a positive-energy representation of level `.

1.2. Why study PERs? There are two types of reasons for focusing our
attention on PERs: mathematical and “physical.” From the point of view
of math, the most convincing reason is that PERs are well-behaved.

Theorem 1.1 (9.3.1 in [PS]). A positive energy representation of LG is

• completely reducible into irreducible positive energy representations,
• unitary,
• and extends to holomorphic representations of its complexification
LGC := Maps(S1, GC).

Furthermore, the representation admits a projective intertwining action of
Diff+(S1).2

This theorem tells us that a PER acts a lot like a representation of a compact
Lie group, since the first three properties are what make life so nice when
studying compact Lie groups. The last property insures that reparametriz-
ing the circle does not affect a PER: the PERs are preserved under a huge
space of LG automorphisms. In a sense, being a PER is a kind of finiteness
condition that insures we can get complete control over the representation
theory.

1Note that this action is not the Uz action in Wassermann, but is the rotation subgroup
of the Möbius group.

2This is the group of diffeomorphisms of the circle that preserve orientation.
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Although I’m know next to nothing about physics, I’ll explain why I guess
that the positive energy condition is natural from a physics point of view,
and I hope that this week will provide better explanations. Here are three
thoughts:

• We focus on projective representations because the space of states
for a quantum mechanical system is really P(H), the projective space
of the Hilbert space H, so it’s only reasonable to expect that a group
act projectively on H.
• When studying quantum mechanics, the “energy” of a particle cor-

responds to the infinitesimal generator of translation along its world-
line (this is what Schrödinger’s equation says). When studying QM
along a circle, the analog of translation is rotation. The positive
energy condition is then the physically reasonable assertion that the
accessible energy states are bounded below.
• Segal says that a PER is the “boundary condition” of a holomorphic

representation of the semigroup C×≤1 o L̃GC. That is, PERs extend
to the study of maps of the annulus into GC. Thus PERs ought to
capture at least the annular part of a CFT (at least in the Segal
style).

2. Projective representations and central extensions

We now explore what a projective representation is and how to construct
invariants that classify such representations.

Definition. A projective unitary representation3 of a group G on a Hilbert
space V is a group homomorphism

ρ : G→ PU(V ) := U(V )/T,
where PU denotes the projective unitary group obtained by quotienting out
by the subgroup of scalar multiples of the identity.

We would like to lift this to an actual representation, which will require
taking a central extension of the group. That is, we pull back the short
exact sequence defining PU :

1 // T // U(V ) // PU(V ) // 1

1 // T // G̃ //

ρ

OO�
�
�

G //

ρ

OO

1

3The unitary group uses the strong operator topology (or any equivalent topology)
and then PU has the quotient topology. You would get in trouble if you used the norm
topology to define U(V ).
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Thus, given a projective representation ρ : G→ PU , we obtain an extension

G̃ and an honest representation ρ : G̃ → U . Conversely, given an honest
representation of a central extension of G, we get a projective representation
of G. Thus we can just study extensions of G and honest representations to
get a handle on projective representations.

Another consequence is that we obtain an invariant for a projective repre-
sentation: the associated central extension. We can give an invariant for an
extension in two ways.

Idea 1: Thinking like topologists, we note that any extension

1→ T→ L̃G→ LG→ 1

defines a circle bundle and hence an element

c1

(
L̃G→ LG

)
∈ H2(LG;Z).

We can try to use this cohomological information to help construct group
extensions or narrow down possible ones. (There’s a really great story if you
head down this road of mixing topology and representation theory, leading
to twisted K-theory, Chern-Simons, and so on, but we’ll not pursue it.)

Homework. Check that H2(LSU(N);Z) ∼= Z. How does the level of FP
compare to the first Chern class of the associated extension?

Idea 2: Thinking like algebraists, we note that at the Lie algebra level we
get a central extension

0→ R→ L̃g→ LG→ 0.

The extended Lie bracket has the form[
(X, a), (Y, b)

]
=
(

[X,Y ], ω(X,Y )
)

for (X, a), (Y, b) ∈ Lg ⊕ R ∼= L̃g (as vector spaces). Consequently, the
functional ω : Lg × Lg → R must be skew-symmetric and satisfy a Jacobi
identity, i.e.

ω([X,Y ], Z) + ω([Y, Z], X) + ω([Z,X], Y ) = 0.

This implies ω will be a 2-cocycle and live in H2(Lg,R).

There is a beautiful characterization of such cocycles.

Proposition 2.1 (4.2.4 of [PS] ). For g semisimple, every continuous G-
invariant 2-cocycle ω for Lg has the form

ω(X,Y ) =
1

2π

∫ 2π

0
〈X(θ), Y ′(θ)〉 dθ

where 〈·, ·〉 is a g-invariant symmetric bilinear form on g.
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The proof is quite simple: you simply observe that such a cocycle extends to
the complexification LgC and apply Fourier series. It’s important to observe
that the G-invariant condition is irrelevant. Since LG acts on Lg by the
adjoint action, it acts on cocycles, and two cocycles are cohomologous if
they live on the same orbit. Now notice that the constant loops G ⊂ LG act
on cocycles as well, but since G is compact, we can do the averaging trick
to replace any cocycle by a cohomologous G-invariant cocycle.

Thanks to this theorem, it’s enough to know about symmetric g-invariant
bilinear forms on the finite-dimensional Lie algebra g. This is a well-known
(to others, probably!) piece of mathematics. In particular, H3(g,R) is
isomorphic to the space of symmetric bilinear g-invariant forms on g, via
the map

Sym2(g)G −→ H3(g)

〈·, ·〉 7−→ 〈·, [·, ·]〉.
(There’s something interesting here in relation to the Chern-Simons action,
but I’m not competent enough to comment . . . )

It’s natural to ask now whether given these invariants (either topological or
Lie-theoretic), we can reconstruct a central extension of LG. For instance,
every 2-cocycle on Lg yields a 2-form on LG by left translation. This would
be the first Chern class of the extension if it existed, so we know this 2-form
has to be integral. If you follow this train of thought and have familiarity
with the Chern-Weil story of bundles, curvature, and connections, then the
following theorem is unsurprising.

Theorem 2.1 (4.4.1 of [PS]). Let G be compact and simply-connected. Then

• A 2-cocycle ω on Lg defines a group extension if and only if [ω/2π] ∈
H2(LG;Z).
• If it defines a group extension, the group extension is unique.
• If G is simple, such an ω is an integral multiple of ωbasic, where
ωbasic is a rescaling of the Killing form so that the longest coroot has
length 2.

Example. For G = SU(N), the Killing form is ωbasic:

〈X,Y 〉 = −Tr(XY ).

Note that for SU(2), there is only one coroot and we verify

〈θ, θ〉 = −Tr
((

i 0
0 −i

)2 )
= 2.

Definition. If G is simple, the level of a central extension L̃G of LG is the
integer ` ∈ Z such that ω

L̃G
= `ωbasic. For simply-connected semisimple G,

the level ` lives in H3(G;Z) ∼= H4(BG;Z).
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2.1. Redefining PERs. With the language of central extensions now avail-
able to us, we can give a more succinct definition of a positive energy rep-

resentation. We denote any central extension of LG by L̃G, and if we want

to specify the level ` extension, we use L̃G`. Thus in the definition of PER,

we replace “projective representation of LG” by “representation of L̃G.”
Likewise, saying “there is an intertwining action of T” means that the rota-
tion action of T on LG plays nicely with the representation. This property
can be rephrased by saying the PER is a representation of the semidirect
product

1→ L̃G→ L̃Go T→ T→ 1,

where T acts by rotation on L̃G. In sum, we obtain the following.

Definition. A positive energy representation of LG at level ` is an honest

representation of L̃G` o T satisfying the positive-energy condition for the
action of T by rotation.

Once you pick a maximal torus for G (and a splitting of the semidirect
product), you have the abelian subgroups

Trot × TG × TCE ⊂ L̃Go Trot.

There are many circle actions appearing this week, so I’ve tried to distinguish
the circle from the central extension, TCE , from the rotation circle, Trot.
They play different roles so watch out!

A positive energy representation decomposes under the action of this big
torus into a finer sum of weight spaces

E =
⊕

(energy n, λ, level l)

E(n, λ, `),

where λ is the weight for the action of TG.

Notice that for an irreducible PER, only one level can appear by Schur’s
lemma: the action of TCE is central, and hence commutes with everything
in sight, so the decomposition of E by level is preserved under the full

action of L̃G. In consequence, when thinking about irreducible PERs, we
can restrict our attention to the weight space for TG×Trot, and this is quite
useful in understanding the affine Weyl group.

3. Reducing to the loop algebra

The loop group is a big, rather unwieldy thing, and we’d like a smaller, more
algebraic object to work with. A first step, familiar from Lie theory, is to
work with its Lie algebra, but even Lg is too unwieldy. Instead, we introduce
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Lpolyg, the polynomial loops into g, for which explicit computations are easy.
This is the space of smooth maps into g that are given by trigonometric
polynomials:

Lpolyg :=

{∑
finite

Xn cos(nθ) + Yn sin(nθ) : Xn, Yn ∈ g

}
Clearly it is dense in Lg. Its complexification is simply

Lpolyg⊗ C ∼= gC[z, z−1],

where z ↔ einθ.

We want a correspondence between representations of LG and representa-
tions of Lpolyg. That is, we want a bijection:

{PERs of LG} ←→ {PERs of Lpolyg}
It is not so hard to construct a map going to the right, but there is some
work involved in showing it’s a bijection. Once we have the bijection, we
can often reduce questions about LG to purely algebraic computations with
Lpolyg (for instance, see Nick’s talk on the action of the Virasoro).

Abstractly, a PER E of LG induces a representation of Lpolyg in the obvious
way:

Lpolyg
exp−→ LG

π−→ PU(E).

For each x ∈ Lpolyg you get a 1-parameter subgroup

R −→ PU(E)

t 7→ π(exp(tx)).

By Stone’s theorem, we get a skew-adjoint operator X ∈ End(E) such that

etX = π(etx).

(This depends on picking a lift to U(E), so X is defined up to a character
of R.) Thus we have a projective representation

ρ : Lpolyg→ EndE.

Wassermann showed this representation is well-behaved.

Let d denote the infinitesimal generator of Trot on E, so that

d
∣∣∣
E(n)

= n & Rθ = eiθd.

Theorem 3.1 ([Was]). Let E be a level ` representation of LG. Then

• The space of finite energy vectors Efin ⊂ E is preserved by ρ;4

4This is the dense subspace of E given by taking the algebraic direct sum of the weight
space Efin =

⊕alg
n≥0 E(n).
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• We can choose lifts (of the 1-parameter subgroups) such that

[d, ρ(x)] = iρ(x′)

on Efin;
• [ρ(x), ρ(y)] = ρ([x, y]) + i`ωbasic(x, y).

This theorem says that we get a level ` PER for Lpolyg. Notice that the
second property says the Lie algebra of rotations intertwines correctly with
our PER for Lpolyg, and the third property says the level is respected.

In the paper [Was], Wassermann proves this theorem in a very concrete
way. The proofs usually boil down to a simple combination of functional
analysis and explicit computation. Recall our concrete example of PERs at
the beginning of the talk.

Let H = L2(S1, V ) = L2(S1,CN ), and recall that Cliff(H) acts on the
fermionic Fock space FP .5 We thus obtain an action of polynomial loops in
V on FP :

LpolyV = {polynomials in einθ} ⊗ V π−→ Cliff(H),

einθ ⊗ v 7−→ a(einθv).

We want a map

Lpolysu(N)
π−→ Cliff(H)

which would give us a PER for Lpolysu(N).

Observe that su(N)C = sl(N,C) is generated by the elementary matri-
ces Eij . It is enough to say where π would send these generators. Let

{e1, . . . , en} be the standard basis for V = CN . Set ek(n) = π(e−inθ ⊗ ek),
and

Eij(n) =
∑
m>0

ei(n−m)ej(−m)∗ −
∑
m≥0

ej(m)∗ei(m+ n).

Theorem 3.2 ([Was]).

• [X(m), a(f)] = a(Xeimθf) for f ∈ LpolyV .
• [d,X(m)] = −mX(m)
• [X(n), Y (m)] = [X,Y ](n+m) +m〈x, Y 〉δn+m,0

• 〈Xe−inθ, Y e−inθ〉 =

∫
〈X,Y 〉basice

−inθ(−im)e−imθ dθ, and therefore

you have a level 1 representation.

The proof consists primarily of straightforward computation. You can then
extend it to F⊗`p to obtain the level ` representations of LSU(N).

5The action uses Wassermann’s notation. It would be c(einθv) in Ryan’s notation.
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