THE SYMMETRIC MONOIDAL 3-CATEGORY OF CONFORMAL NETS

SPEAKER: BRAXTON COLLIER TYPIST: BRENT PYM

ABSTRACT. Notes from the "Conformal Field Theory and Operator Algebras workshop," August 2010, Oregon.

The goal of this talk is to give a definition of symmetric monoidal 3-categories, show that conformal nets form such a category and relate the subject to Chern-Simons theory. (This is work with Bartles, Douglas and Henriques.)

1. MOTIVATION: TOPOLOGICAL QFT

Let $Bord_{n-1}^n$ be the category of bordisms of *n*-manifolds. This category is a symmetric monoidal category with operation given by disjoint unions and identity object the empty set \emptyset .

Definition. An *n*-dimensional topological quantum field theory or TQFT is a symmetric monoidal functor

$$Z: Bord_{n-1}^n \to (Hilbert, \otimes)$$

 $\Omega Bord_{n-1}^n = End(\varnothing) = {\rm closed}$ n-manifolds/diffeomorphisms

 $\Omega Hilb = End(\mathbb{C}) = \mathbb{C}$

So Z assigns \mathbb{C} -valued diffeomorphism invariant to closed *n*-manifolds.

 $Bord_k^n$ is the symmetric (n - k)-category which we think of as manifolds with bordisms of bordisms of ..., We have

$$\Omega Bord_k^n \cong Bord_{k+1}^n$$

Definition. Let \mathcal{C} be a symmetric monoidal *n*-category with $\Omega^{n-1}\mathcal{C} \cong Hilb_{\mathbb{C}}$. A \mathcal{C} -valued local TQFT is a symmetric monoidal functor $Bord_0^n \to \mathcal{C}$

Date: August 24, 2010.

Available online at http://math.mit.edu/~eep/CFTworkshop. Please email eep@math.mit.edu with corrections and improvements!

Theorem 1.1 (BDH). There exists a symmetric monoidal 3-category CN whose objects are conformal nets and $\Omega^2 CN \cong Hilb$.

Theorem 1.2 (Cobordism hypothesis of Baez-Dolan, 99% certainty proof by Hopkins-Lurie). Framed local C-valued n-dimensional TQFTs are in oneto-one correspondence with dualizable objects in C.

Theorem 1.3. $A \in CN$ is dualizable if and only if it is the direct sum of irreducible conformal nets with finite μ -index.

2. WARM-UP: ALGEBRAS AND BIMODULES

We assign to a 0-dimensional manifold an algebra A. Given a 1-morphism between points with algebras A and B, we assign an (A, B)-bimodule V. We compose these bimodules using the tensor product. To a 2-morphism, we assign a bi-module homomorphism between the corresponding bi-modules. There are two ways to compose these morphisms (horizontal and vertical) and in this case we ask that they agree.

Remark. We can thing of a symmetric monoidal category as a bi-category with a 1-object, so a symmetric monoidal category is something at least 4-categorical in nature.

There is a symmetric monoidal category of algebras with $\otimes_{\mathbb{C}}$. There is also a symmetric monoidal category of bimodules with \otimes :

$$(_{A}V_{B})\otimes (_{A'}V'_{B'}) = {}_{A\otimes A'}(V\otimes V')_{B\otimes B'}.$$

In this case the functors s and t with take an arrow to its source and target are symmetric monoidal functors $Bimod \rightarrow Alg$ with

$$\boxtimes : Bimod \ ^s \times ^t Bimod \to Bimod$$

The upshot is that (Alg, Bimod) is a category object in the 2-category SMC of symmetric monoidal categories. Let us, then, think of conformal nets as a bicategory object in SMC.

3. Conformal nets revisited

Definition. We call *Int* the (topological) category whose objects are oriented intervals and whose morphisms are smooth embeddings, which are not necessarily orientation preserving. The topology on the hom-sets is given by point-wise convergence.

Notice that we are allowing more information than just the transformation given by Mobiüs transformations.

Definition. A conformal net is a continuous functor

 $\mathcal{A}: Int \to vN\text{-}alg$

from intervals to von Neumann-algebras satisfying the usual axioms, as well as

- For $\phi: I \to I$, such that ϕ is the identity in a neighbourhood of ∂I , then $\mathcal{A}(\phi): \mathcal{A}(I) \to \mathcal{A}(I)$ is inner
- If $\phi: I \to J$ is orientation preserving (resp. reversing) then $\mathcal{A}(\phi)$ is a homomorphism (resp. anti-homomorphism).

4. Conformal Nets and 2-algebras

Given a conformal net \mathcal{A} , let $\mathcal{A} = \mathcal{A}([0,1])$. Define the standard inclusions

$$i, j: [0, 1] \to [0, 2]$$

where i is the inclusion and j is inclusion plus translation one unit to the right. Also pick an isomorphism

$$s: [0,2] \to [0,1]$$

which has derivative 1 in a neighbourhood of $\partial [0,2].$ We define

$$\mu: A \times A \to A$$

by

$$\mu(x,y) = s_*(i_*(x)j_*(y)) = (si)_*(x)(sj)_*(y) = \begin{pmatrix} x \\ y \end{pmatrix}$$

Claim. There exists $v \in A$ such that

(1)

$$v\begin{pmatrix} \begin{pmatrix} x\\y\\z \end{pmatrix} v^{-1} = \begin{pmatrix} x\\ \begin{pmatrix} y\\z \end{pmatrix} \end{pmatrix}$$

(2)

 $v^2 = \begin{pmatrix} 1 \\ v \end{pmatrix} v \begin{pmatrix} v \\ 1 \end{pmatrix}$

We get identities like

The morphisms in the category are:

- 1-morphisms: defects
- 2-morphisms: sectors
- 3-morphisms: homomorphisms of sectors

Definition. A bicolored interval is an interval I with two subintervals I_w and I_b (the white and black intervals) with $I = I_w \cup I_b$ and such that either

$$\begin{array}{ll} (1) \ \ I_w = \varnothing, \\ (2) \ \ I_b = \varnothing, \ {\rm or} \\ (3) \ \ I = I_w \cup I_b \end{array}$$

together with a coordinate function $c: nbd(I_w \cap I_b) \to \mathbb{R}$.

We can define a category Int_{bc} of bicolored intervals.

Definition. A defect $D: A \to B$ for $A, B \in CN$ is a cosheaf $D: Int_{bc} \to vN$ -alg such that

 $D|_{\text{white int.}} = A$

and

 $D|_{\text{black int.}} = B$

5. Sectors

Consider intervals I in S^1 such that either $i \notin I$ or $-i \notin I$. We can bicolor such intervals: call the pieces to the left of $\pm i$ black and those to the right of $\pm i$ white.

We have bimodules with defects and a composition using Connes fusion:

There is a natural isomorphism between the different ways of fusing, which uses the machinery we've been discussing this week.