MODULARITY OF THE CATEGORY OF REPRESENTATION OF A CONFORMAL NET, II

SPEAKER: MARCEL BISCHOFF TYPIST: EMILY PETERS

ABSTRACT. Notes from the "Conformal Field Theory and Operator Algebras workshop," August 2010, Oregon.

Outline:

- (1) Introduction
- (2) Two interval inclusions
- (3) Modularity

Goal. Let \mathcal{A} be a completely rational conformal net. Orit showed the first few of these:

- (1) **Semisimplicity:** Every seperable non-degenerate rep is completely reducible.
- (2) The number of unitary equiv. classes of irreducible reps is finite
- (3) **Finite statistics:** Every separable irreducible representation has finite statistical dimension
- (4) Modularity: $\operatorname{Rep}_f(\mathcal{A})$ has a monoid structure with simple unit and duals (conjugates) and a maximally non-degenerate braiding, thus is modular.

1. INTRODUCTION

Assume \mathcal{A} is a completely rational conformal net, i.e.

$$\mathcal{I} \ni I \longmapsto \mathcal{A}(I) \subset B(H_0)$$

with H_0 the vacuum Hilbert space, $\Omega \in H_0$ the vacuum vector, $U \curvearrowright H_0$ unitary positive energy representation of PSU(1, 1). These data fulfil some axioms (Corbett) plus the additional assumption of *complete rationality*:

Date: September 1, 2010.

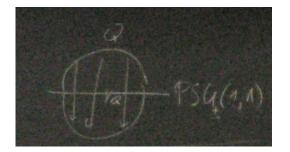
Available online at http://math.mit.edu/~eep/CFTworkshop. Please email eep@math.mit.edu with corrections and improvements!

- (1) strong additivity
- (2) split property
- (3) finite μ_2 index

Recall a representation of \mathcal{A} is a collection of reps $\{\pi_I\}_{I \in \mathcal{I}}$ with $\pi_I : \mathcal{A}(I) \to B(H)$ which are compatible. If H separable (then we call π a separable representation), for all $I \in \mathcal{I}$ there is $\rho \simeq \pi$ (we also write $\rho \in [\pi]$; the equivalence class $[\pi]$ is called sector) on H_0 with $\rho_{I'} = id_{\mathcal{A}(I')}$. Thus the representation acts trivial outside I. ρ then is called *localized in* I. One has a monoidal structure, given by composition of localized endomorphism (Yoh showed relation to Connes fusion).

Conjugates: Let $\pi \simeq \rho$ be a separable non-degenerate representation localized in *I*. Let *P*, *Q* be two other intervals.

Let $r_Q \in PSU_{\pm}(1,1)$ reflection associated to the intervall Q, cf:



Then we can define another representation by

$$\bar{\rho_I}(x) = J_P \rho_{r_Q(I)} (J_Q x J_Q) J_P$$

where J_P is the modular conjugation for the algbra $\mathcal{A}(P)$. i.e. $J_P \mathcal{A}(P) J_P = \mathcal{A}(P)'$. Remember that we have Bisognano-Wichman property, telling us that $J_P x J_P = U(r_P) x U(r_P)^*$ holds, where U is now the extended (anti) unitary representation of $PSU_{\pm}(1,1)$, i.e. J_P acts geometrically by a reflection. This ensures the above formular is well defined.

It turns out the equivalence class $[\bar{\rho}_I]$ does not depend on P, Q.

Theorem 1.1. If π is separable and irreducible with finite statistical dimension, then there exists a conjugate representation $\bar{\pi}$. If π is Möbius covariant, then also $\bar{\pi}$. In particular if $\rho \in [\pi]$ like above then $\bar{\rho} \in [\bar{\pi}]$

So the conjugate representation is given by the above formular up to some choice in the unitary equivalence class.

 $\mathbf{2}$

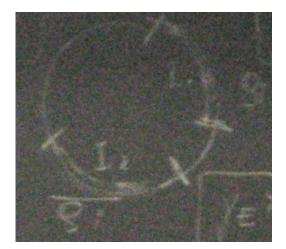
2. Two interval inclusions

We begin with some fact from subfactor theory

Fact. Let $N \subset M$ be an inclusion of type III factors, which is irreducible (ie $N' \cap M = \mathbb{C}\mathbf{1}$) and has finite index: $[M : N] \leq \infty$. We assume we have a canonical endomorphism $\gamma : M \hookrightarrow N$, $\gamma(x) = J_N J_M x J_M J_N$ for $x \in M$. Then are equivalent:

(1) $\sigma \in \text{End}(N) : \sigma \prec \gamma|_N$, i.e. there is $U \in N$ such that $U\sigma(x) = \gamma(x)U$ (2) There is $\psi \in M$ such that $\psi x = \sigma(x)\psi$ for all $x \in N$.

This we want to apply to the two interval inclusion $\mathcal{A}(E) \subset \hat{\mathcal{A}}(E) := \mathcal{A}(E')'$



with the canonical endomorphism $\gamma_E : \hat{\mathcal{A}}(E) \hookrightarrow \mathcal{A}(E)$.

Pick π_i an irreducible separable representation with finite index, $\rho_i \in [\pi_i]$ localized on I_1 .

Then exist a conjugate $\bar{\pi}_i$ and we pick $\bar{\rho}_i \in [\bar{\pi}_i]$ localized in I_2 .

There exist a up to constant unique intertwiner (think of co-evaluation map) $R_i \in \text{Hom}(\mathbf{1}, \rho_i \bar{\rho}_i) \in \mathcal{A}(E)$, i.e. $R_i(x) = \rho_i(\bar{\rho}_i(x))R_i$.

Thus using $\sigma = \rho_i \bar{\rho}_i$ in the above fact we get $\rho_i \bar{\rho}_i \prec \lambda_E = \gamma_E|_{\mathcal{A}(E)}$. On the lefthand side we can even take a sum over mutually non-equivalent representations with finite index Γ_f and the inequivality still holds:

$$\bigoplus_{i\in\Gamma_f} \rho_i \bar{\rho}_i \prec \lambda_E = \gamma_E|_{\mathcal{A}(E)}$$

because the endomorphism are mutually inequivalent. It turns out by some further arguments:

$$\bigoplus_{i\in\Gamma_f} \rho_i \bar{\rho}_i \simeq \lambda_E = \gamma_E|_{\mathcal{A}(E)}$$

Taking the index on both sides one can conclude:

$$\sum_{\Gamma_f} d(\rho_i)^2 = [\hat{\mathcal{A}}(E) : \mathcal{A}(E)] = \mu_2$$

We will use another fact from subfactor theory

Fact. Let $\gamma(x) = \sum_i U_i \sigma_i(x) U_i^*$ for $x \in N$ with σ_i irreducible, U_i partial isometries, such that $\sum_i U_i^* U_i = \mathbf{1}, U_j U_i^* = \delta_{ij} \mathbf{1}$. Then every $x \in M$ is of the form $x = \sum x_i \psi_i$ for unique $x_i \in N$.

So, for each $x \in \hat{\mathcal{A}}(E)$ we have a decomposition $x = \sum_{i \in \Gamma_f} x_i R_i$ with unique $x_i \in \mathcal{A}(E)$. Thus every element of the bigger factor can be written as elements of the smaller subfactor and intertwiner $\{R_i\}$:

$$\hat{\mathcal{A}}(E) = \mathcal{A}(E) \vee \{R_i\}'$$

The two-interval inclusion is connected to the intertwiner R_i , thus connected to the representation theory of the net.

3. Modularity

Proposition 3.1. Every irreducible seperable representation of \mathcal{A} has finite statistical dimension.

Proof. Sketch: Let $\rho, \rho' \in [\pi]$ be localized in the two components of E respectively and $u \in \operatorname{Hom}(\rho, \rho') \subset \hat{\mathcal{A}}(E)$ their intertwiner. By the last fact we can uniquely write u as $u = \sum u_i R_i$. Then exist an i such that $u_i \neq 0$ and a short calculation shows that $u_i \in \operatorname{Hom}(\rho_i \rho, id)$, i.e. there exist an non trivial intertwiner $\rho_i \rho$ with the vacuum representation for some i. Duality implies the existence of a non-trivial intertwiner between ρ and $\bar{\rho}_i$ given essentially by:

$$\rho \xrightarrow{coev_{\bar{\rho}_i} \otimes 1} \bar{\rho}_i \rho_i \rho \xrightarrow{1 \otimes u_i} \bar{\rho}_i$$

and because $\rho, \bar{\rho}_i$ both are irreducible this means $\rho \simeq \bar{\rho}_i$.

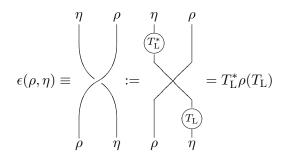
Next: what's the braiding in this category? Braiding is given by a bijective morphism $\epsilon(\rho, \eta) \in \text{Hom}(\rho\eta, \eta\rho)$ satisfying some identities.

The idea how to define ϵ is to transport ρ and η in disjoint regions (so they commute), exchange the order, and than transport back. This does not depend one the explicit choice of the regions. One could for example transport η to the left or to the right, this gives in particular two (a priori) inequivalent choices.

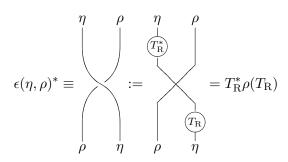
So let ρ , η be localized in some intervalls, cf

Let $\eta_{L/R} \in [\eta]$ be to equivalent representations localized left and right from ρ , respectively and $T_{L/R} \in \operatorname{Hom}(\eta, \eta_{L/R})$ intertwiners. Note that $\rho \eta_{R/L} = \eta_{R/L} \rho$.

Define $\epsilon(\rho, \eta)$



Then



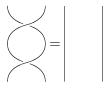
thus is given by the other choice.

Note: $T^*_{L/R}\rho(T_{L/R})$ is indeed

$$\rho\eta \xrightarrow{1 \otimes T_{L/R}} \rho\eta_{N/L} = \eta_{N/L} \rho \xrightarrow{T_{L/R}^* \otimes 1} \bar{\rho}_i$$

using that the categorical tensor product $\rho \eta \equiv \rho \otimes \eta$ is the composition of localized endomorphism.

Definition. ρ and η have trivial monodromy if $\epsilon(\rho, \eta) = \epsilon(\eta, \rho)^*$ or equivalently $\epsilon_M(\rho, \eta) := \epsilon(\rho, \eta)\epsilon(\eta, \rho) = \mathbf{1}$, i.e.



Note that $\epsilon_M([\rho], [\eta]) = \epsilon_M(\rho, \eta)$ is well-defined, i.e. the monodromy just depends on sectors and not on the representations itself.

Definition. π separable, non-degenerate representation of \mathcal{A} is called *finite* if one of the following equivalent conditions holds

- π is a finite direct sum of irreps.
- π has finite statistical dimension
- $\pi(C^*(\mathcal{A}))'$ is finite.

Let $\operatorname{Rep}_f(\mathcal{A})$ be the category of all finite reps.

Definition. ρ is called degenerate with respect to braiding if $\epsilon_M(\rho, \eta) = 1$ for all $\eta \in \operatorname{Rep}_f(\mathcal{A})$.

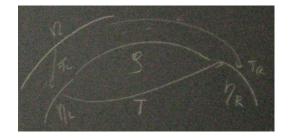
The center $Z_2(\operatorname{Rep}_f)$ is the set of degenerate w.r.t. braiding reps.

Note: in a modular category C, $Z_2(C)$ is trivial, i.e sums of **1**. This is the most non-trivial fact to check.

We use two ingredients:

Criterion for degeneracy:
$$\epsilon_M(\rho, \eta) = 1$$
 iff $\rho(T) = T$ for $T \in \text{Hom}(\eta_L, \eta_R)$.

Proof. $\epsilon_M(\rho_\eta) \equiv T_L^* \rho(T_L T_R^*) T_R = 1$ iff $\rho(T_L T_R^*) = T_L T_R^*$. The statement follows, realizing $T_L T_R^*$ equals T^* up to some constant:



Criterion for triviality of a representation: If ρ act trivially on $\hat{\mathcal{A}}(E)$ then $\rho \simeq N \cdot id$, thus trivial.

Theorem 3.1. $Z_2(\operatorname{Rep}_f \mathcal{A})$ is trivial thus $\operatorname{Rep}_f \mathcal{A}$ is modular.

Proof. $\pi \in Z_2(\operatorname{Rep}_f(\mathcal{A}))$ and $\rho \in [\pi]$ localized as above and E the union of intervals left and right from the localization interval of ρ . $\rho \in Z_2$ implies $\rho(T) = \mathbf{1}$ for all possible charge transporters T from left to the right using the first criterion.

We have seen that the big factor $\hat{\mathcal{A}}(E)$ is generated by the small $\mathcal{A}(E)$ and the intertwinner R_i , this turns out to be equivalent with $\hat{\mathcal{A}}(E)$ generated by $\mathcal{A}(E)$ and interwiner T_i which transport $\eta = \rho_i$ from left to right, i.e.

$$\mathcal{A}(E) = \mathcal{A}(E) \lor \{R_i\} = \mathcal{A}(E) \lor \{T_i\}$$

By definition ρ acts trivially on $\mathcal{A}(E)$, but also on all charge transporters T_i thus on $\hat{\mathcal{A}}(E)$. But this is the second criteria which implies triviality of ρ thus π . Thus the center is trivial.