QUESTIONS AND COMMENTSS

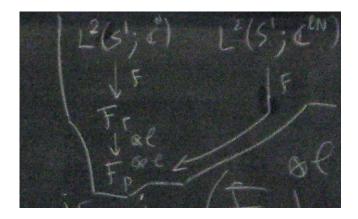
SPEAKER: ANDRÉ HENRIQUES TYPIST: EMILY PETERS

ABSTRACT. Notes from the "Conformal Field Theory and Operator Algebras workshop," August 2010, Oregon.

Projective $SL_2(\mathbb{R})$ representations on various spaces. Some facts (they might seem contradictory).

 $SL_2(\mathbb{R})$ acts on Fock space $\mathcal{F}_P^{\otimes \ell}$.

Every level ℓ *LG* representation appears in $\mathcal{F}_P^{\otimes \ell}$ (this is Wasserman's definition of level).



–this picture explains something about the appearance of N (of SU(N)) in this setting.

 $SL_2(\mathbb{R})$ acts only projectively on H_{λ} .

Why isn't it an honest action? H_{λ} appears with huge multiplicity in $\mathcal{F}_{P}^{\otimes \ell}$ – the λ -isotypical component of $\mathcal{F}_{P}^{\otimes \ell}$ can be written as $H_{\lambda} \otimes ($ Multiplicity space)

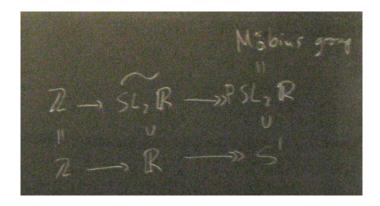
Date: August 19, 2010.

Available online at http://math.mit.edu/~eep/CFTworkshop. Please email eep@math.mit.edu with corrections and improvements!

– both components are projective reps of $SL_2(\mathbb{R})$, and when you tensor them together the cocycles cancel.

Question. What's up with the braiding on the category of conformal nets?

Universal central extension of $SL_2(\mathbb{R})$ (or $PSL_2(\mathbb{R})$) is $SL_2^{\sim}(\mathbb{R})$, extension of $SL_2(\mathbb{R})$ with fiber \mathbb{Z} .

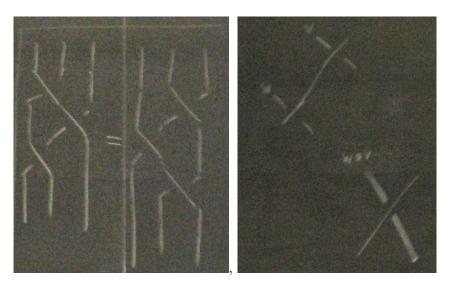


Given a representation H_{λ} of a net (drawn in a circle), rotation by π introduces an isomorphism between $\mathcal{A}(I)$ and $\mathcal{A}(-I)$. Define H_{λ}^{π} to be H_{λ} with actions twisted by rotation by π . This is a new representation of the conformal net, which is isomorphic to the previous one, but not canonically. The half-twist θ - the element lifting π - is an *LG*-equivariant map $H_{\lambda} \to H_{\lambda}^{p}i$.

The braiding $\beta: H_{\lambda} \boxtimes H_{\nu} \to H_{\nu} \otimes H_{\lambda}$ is given by $\theta_{H_{\lambda} \boxtimes H_{\nu}}^{-1}(\theta_{H_{\lambda}} \circ \theta_{H_{\nu}})$.

Noah: is there any easy way to check this is actually a braiding, other that just satisfying the braid relations?

 $\mathbf{2}$



Question. Can you say something about how the primary fields appear in the Segal picture?

V is a rep of G, H are reps of LG

A primary field is an $LG_{\ell} \rtimes S^1$ -equivariant map (1) $C^{\infty}(S^1, V_k) \otimes H_i \to H_i,$

which can be unbounded.

This encodes the same information as an \tilde{LG}_{ℓ} -equivariant map

even though the second is positive energy and the first isn't.

(2) is equivalent to $\operatorname{Hom}_{L_iG}(H_0, H_k) \otimes H_j \to H_i$.

I'm given $f \in C^{\infty}(S^1, V_k)$. What do I get from this function? From (1) I get $H_j \to H_i$. I also get (ah, now comes the circular reasoning) – if you already believe the equivalence between the j = 0, i = k case of the correspondence, then $f \in C^{\infty}(S^1, V_k)$ induces a map $H_0 \to H_k$. Here we've used the obvious map $H_k \boxtimes H_0 \to H_k$.

So, a primary field takes a function f, produces a map $H_0 \to H_k$.

Okay, end circular reasoning. I also get, from f, using (2), an element in $Hom(H_0, H_k)$.

Hmm ... can anyone say anything about the Segal picture?