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Fixing notation: φ is a faithful, normal state on a von Neumann algebra M .
What does that mean?

A state is a continuous linear functional φ : M → C such that φ(1) = 1 =
‖φ‖. Equivalently, φ(x∗x) ≥ 0 for all x ∈M .

Faithful means that φ(x∗x) = 0 if and only if x = 0.

Normal means that the state is continuous when M is given the ultraweak
topology. That is, the topology wherre convergence is givenn by xλ → x if

∞
∑

i=1

〈xλξi, ηi〉 →

∞
∑

i=1

〈xξi, ηi〉

whenever
∑

‖ξi‖
2 + ‖ηi‖

2 <∞.

Equivalently, whenever xλ is an increasing net in M that converges to x, we
have φ(xλ) → φ(x).

Put inner product on M by 〈x, y〉 = φ(y∗x). This gives us a new norm,
‖ · ‖2 on M . Complete M with respect to this norm to get the Hilbert space
L2(M). Let Ω denote the image of 1M in L2(M). This is called the “vacuum
vector.”
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We let M act on L2(M), densely defined by left multiplication. For this
action, Ω is a cyclic, separating vector for this action. Cyclic means MΩ is
dense in L2(M), and separating means xΩ = 0 =⇒ x = 0 for all x ∈M .

We now look at the map S0 : MΩ → MΩ given by S0(xΩ) = x∗Ω. In
generral, this map is unbounded, and so cannot be extended to L2(M).
However, it is as nicely behaved as an unnbounded operator can be. We will
be especially interested in its polar decomposition.

Can also define F0 : M ′Ω →M ′Ω by F0(x
′Ω) = (x′)∗Ω for x′ ∈ M ′. Recall:

M ′ is the commutant of M , as it acts on L2(M). i.e. M ′ = {x ∈ B(H) :
xy = yx for all y ∈M}.

Notation: if A and B are unbounded operators, we write A ⊂ B if domA ⊂
domB and B agrees with A when restrict to domA.

If A is unbounded, the domain of A∗ is {η : 〈Aζ, η〉 is a bounded function
of ζ}. Then we have 〈ζ,A∗η〉 = 〈Aζ, η〉 where the expression is defined.

Fact. S0 ⊂ F ∗

0 and F0 ⊂ S∗

0 .

Proof of fact. Let a ∈ M , a′ ∈ M ′. Then 〈S0(aΩ), a
′Ω〉 = 〈a∗Ω, a′Ω〉 =

〈(a′)∗Ω, aΩ〉. This is clearly a bounded functino of aΩ, which implies domS0 ⊂
domF ∗

0 . The other inclusion is proved similarly. �

Since Ω is cyclic and separating for M , it is also cyclic and separating for
M ′, so S0 and F0 are both densely defined. By a standard result in operator
theory, both S0 and F0 are closable. That is, when we take the closure of
the graph of S0 or F0, it remains the graph of a linear operator. These new
operators have the continuity property that if xn → x and S0(xn) converges,
then S0(xn) → S0(x).

Theorem 0.1. Let S and F be the closures of S0 and F0, respectively. Then

S = F ∗ and F = S∗.

Since S and F are losed and densely defined, so we have a polar decompo-

sition S = J∆
1

2 . Recall that S is conjugate linear, so J is conjugate linear.
In fact, J is an isometry. In general, ∆ will be unbounded.

Claim. J∆
1

2J = ∆−
1

2

Proof. S = S−1, so S−1 = (J∆
1

2 )−1 = ∆−
1

2J . Rearranging proves the
claim. �
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We now want to show JMJ =M ′. We begin with some preliminary results.

Lemma 0.2. With φ as before, and ψ ∈M∗ such that |ψ(y∗x)|2 ≤ φ(x∗x)φ(y∗y).
Then S = F ∗ and F = S∗ and given λ > 0 then there exists a ∈ M with

‖a‖ < 1
2 such that ψ(x) = λφ(ax) + λ−1φ(xa).

This is a sort of non-commutative Radon-Nikodym derivative.

Lemma 0.3. Let λ be as before. Given a′ ∈ M ′, theere is an a ∈ M such

that aΩ ∈ dom(F ) and a′Ω = (λS + λ−1F )aΩ.

Sketch of proof. From basic facts about the GNS construction, φ(x) = 〈xΩ,Ω〉.
We then have

〈xΩ, a′Ω〉 = λ〈axΩ,Ω〉+ λ−1〈xaΩ,Ω〉

assuming ‖a‖ < 1. Once we check that everything is in the right domain,
we get that

λ〈axΩ,Ω〉+ λ−1〈xaΩ,Ω〉 = λ〈xΩ, SaΩ〉+ λ−1〈aΩ, S(xΩ)〉.

The last expression is λ−1〈xΩ, F (aΩ)〉. �

Lemma 0.4. Let λ, a and a′ be as before. Then if xi, η ∈ dom(F )∩dom(S),
we have λ〈SaSξ, η〉 + λ−1〈FaFξ, η〉 = 〈a′ξ, η〉.

Proof.

F (0) =

∫

∞

−∞

F (it+ 1
2) + F (it− 1

2)

2 cosh(πt)
dt

provided f is bounded, holomorphic on the strip −1
2 ≤ Re(z) ≤ 1

2 . �

Proposition 0.5. Let λ, a and a′ be as before. Then

a =

∫

∞

−∞

λ2it
∆itJa′J∆−it

cosh(πt)
dt

Proof idea. λ2itetc. extend holomorphically, apply prev lemma �

Theorem 0.6. JMJ =M ′ and ∆itM∆−itM for all t ∈ R.

Proof idea. Take a unitary u ∈ M ′. Then a = u∗au. Pull u under the inte-
gral given above, and note that the Fourier transforms of u∗∆itJa′J∆−itu

and ∆itJa′J∆−it are equal, so the operators are equal. Plugging in t = 0
impliess JM ′J ⊆M . By symmetry JMJ ⊆M ′, which proves the theorem.
We used the fact that an operator commuting with every unitary in M ′

must commute with everything in M ′, and is therefore in M (by the double
commutant theorem). �
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Example. M = M2(C), and φ(x) = tr(ax) where a =

[

µ1 0
0 µ2

]

for µi > 0

and µ1 + µ2 = 1. In this example, J(eij) =
√

µi

µj
eji (extended by conjugate

linearity) and ∆(eij) =
µi

µj
eij (extended linearly).

Example. Here we show an example where S is unbounded. Consider

M =
∞
⊗

i=1

M2(C).

Our state is φ =
⊗

∞

i=1 φi, where φi(x) = tr(aix) as above with µ1,i → 0 as
i→ ∞ (and thus µ2,i → 1).

Back to the M2(C) example. Fix x, y ∈ M2(C). Define f(z) on the strip

0 ≤ Im z ≤ 1 by f(z) = 〈∆−izyΩ, xΩ〉. Then, for t ∈ R, f(t) = φ(σφt (x)y)

and f(t+ i) = φ(yσφt (x)). Here, σ
φ
t (x) := ∆itx∆−it.

Theorem 0.7 (KMS condition). Define f(z) = 〈∆−izxΩ, yΩ〉 for x, y ∈M

fixed. Then f(t) = φ(σφt (x)y) and f(t+ i) = φ(yσφt (x)). If αt is a strongly

continuous 1 parameter group of automorphisms of M satisfying φ ◦ αt = φ

and there exists a function G, holomorphic in the strip, such that G(t+ i) =

φ(yσφt (x)) and G(t) = φ(σφt (x)y), then αt = σ
φ
t for all t ∈ R.

Corollary 0.8. The following are equivalent:

(1) φ(ax) = φ(xa) for all x ∈M

(2) σφt (a) = a for all t ∈ R.

Proof. (1) =⇒ (2). If x ∈M , then

〈x∗Ω, aΩ〉 = 〈Ω, xaΩ〉 = 〈Ω, axΩ〉 = 〈a∗Ω, xΩ〉 = 〈S(aΩ), xΩ〉.

This implies aΩ ∈ domS∗ and S∗(aΩ) = a∗Ω. Sine S∗ = ∆
1

2J , a∗Ω has to
be fixed by ∆. Hence aΩ is fixed by ∆ and thus ∆it.

(2) =⇒ (1). We have φ(σφt (x)a) = φ(σφt (xa)) = φ(xa). This implies f(z)
is constant along the real axis, which implies that it is constant everywhere
in the strip 0 ≤ Im(z) ≤ 1. Plugging in t = 0 we get φ(xa) = φ(ax). �


