
THE BISOGNANO-WICHMAN THEOREM & NETS ON R4

SPEAKER: CHRISTOPH SOLVEEN
TYPIST: EMILY PETERS

Abstract. Notes from the “Conformal Field Theory and Operator Al-
gebras workshop,” August 2010, Oregon. Revised and extended by
Christoph Solveen.

(1) Minkowski space
(2) Axioms for QFT
(3) BW theorem & Physics

We’ll talk about the history of how the study of conformal nets came about.
They are studied because they are simpler than physics!

Bisognano-Wichman theorem: There is a geometric action of the modular
operators on Minkowski space. (The 1dim version is what Corbett called
”Geometric Modular Operators” in his talk.)

A note on units: Unless otherwise stated, we choose ”natural units“ where
the velocity of light c and the reduced Planck’s constant ~ are equal to one.

1. Space-time

We begin by discussing the arena in which special relativistic physics takes
place: Minkowski spacetime M4. It is the real manifold R4, equipped with
a particular pseudo-Riemannian metric η with signature (+,−,−,−). The
latter is called Minkowski metric and will be defined below.

Some history on special relativity: In the 1830s, Faraday realized that points
in space and time should be involved in carrying the effect of a perturbation
of a physical system over a distance. This contrasts the situation in Newton’s
mechanics of point particles and leads to the concept of fields: at each point
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in space and time, one is given a set of observables, the field quantities.
Mathematically, by a field one therefore means a section of a bundle over
time × space.

Maxwell used this idea to write down his famous field equations for elec-
tromagnetism. They have (at least) two important properties: (1) The dy-
namics of the fields described by Maxwell is governed by a set of hyperbolic
PDEs. This implies in particular that the effect of a perturbation of the
field quantities propagates with finite velocity. In vacuo, this velocity is the
speed of light c = 3 ·1010m/s. (2) Further the Maxwell equations are covari-
ant under a group that had not made an appearance in physics before: the
Lorentz group. In particular, the symmetry group of Newtonian physics, the
Galilei group, which is supposed to relate between inertial observers (tied
to observers that are not subject to any forces, i.e. ”freely falling“ ones),
does not act covariantly on the fields. Following the Newtonian picture of
space and time, this would mean that there is one preferred reference system
in which the Maxwell equations hold while they do not hold in any other
(this preferred coordinate system would be the rest system of the famous
”ether”).

It was Einstein who at the beginning of the 20th century rejected the idea
of the ether and put more trust into the Maxwell equations than into the
Newtonian concept of space and time: he promoted (1) (finite propagation
speed for local perturbations of a physical system) and (2) (covariance of the
laws of physics under the Lorentz group) to the status of axioms. This led to
special relativity: by (1), the notion of a global time that is universal for all
points in space looses its meaning. Rather, one needs a way of synchronizing
clocks located at separated points and it follows that the division of the
”arena“ into time and space coordinates becomes observer-dependent. The
class of inertial observers is not acted on by the Galilei group but rather by
the Lorentz group.

Shortly after Einstein’s great insights, it was the mathematician H. Mi-
nowski who realized that these ideas can be formalized as follows: we stop
thinking about space and time separately but rather consider spacetime, a
four-dimensional manifold diffeomorphic to R4. While we have lost an ob-
jective (coordinate-independent) notion of the division of this manifold into
space and time, we should still be able to operationally define a notion of
future, past and present of any given point (”event“) in spacetime.

For this, one uses the finite speed of light: for any given event x one defines
the future light cone L+ to be the set of events that can be hit by light
rays emanating from x. Its interior V + consists of events that can be hit
by perturbations produced at x moving with speed less than c and forms
the future of x. Likewise, the past light cone L− consists of events that can



THE BISOGNANO-WICHMAN THEOREM & NETS ON R4 3

hit x with a light signal. Its interior V − is the set of events that can hit x
with something that travels with speeds less than c and forms the past of
x. The remaining events in spacetime that are not members of any of these
sets form the present of x and are called space-like separated from x. They
cannot exact any influence on x and vice versa.

Supposing the existence of a preferred class of coordinates on R4, the inertial
coordinates, we introduce the metric η by requiring that its components in
inertial coordinates are given by

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

With the help of this geometrical object, we can define the (square of the)
Lorentz distance between x, y ∈ R4 to be (x−y)2 :=

∑
µ,ν ηµν(xµ−yµ)(xν−

yν). The light cone etc. described above is then formalized as follows:

L+(L−) of x := {y ∈M4 : (x− y)2 = 0 , x0 − y0 > (<)0}
V +(V −) of x := {y ∈M4 : (x− y)2 > 0 , x0 − y0 > (<)0}
present of x := {y ∈M4 : (x− y)2 < 0} .

For later purposes, we give the following
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Definition. The causal complement O′ of a subset O of Minkowski space-
time is given by

O′ = {y ∈M4 | (x− y)2 < 0 ∀x ∈ O}
(The unshaded region in the following picture). A region O is called causally

complete ifO = O′′.

Events in O′ cannot exact any influence on events in O (and vice versa).
The basic example for causally complete regions are the double cones (or
“diamonds”) given by the interior of the intersection of the past light cone
of x and the future light cone of y, where y is supposed to be in the past of
x.

Inertial coordinates are related by the symmetry group of Minkowski space-
time, i.e. the group of diffeomorphisms of M4 that leave the Lorentz distance
invariant. This is the Poincaré group: P = L n R4. Here R4 is the group
of translations of M4 and L is the Lorentz group alluded to above. Inter-
preted as real 4× 4 matrices acting on R4, the latter can be represented as
L = {Λ ∈ Mat(n,R) : ΛηΛT = η}. Since L still contains transformations
that reverse spatial orientation and time-orientation, we restrict attention

to its proper orthochronous subgroup L↑+ := {Λ ∈ L : Λ0
0 > 1, det(Λ) = 1}.
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Correspondingly we have the proper orthochronous subgroup of the whole

Poincaré group: P↑+ = L↑+ nR4.

There are two different subgroups of L↑+: namely the orientation preserving
rotations of the spacelike slices of spacetime (which is just SO(3)) and the
Lorentz boosts that relate inertial observers that are in uniform motion rel-
ative to each other. As an example of the latter (which is of relevance for
the discussion later on), we consider a boost of an observer A to a frame of
an observer B that travels into the x1-direction of A with relative speed v.
The boost is represented by

(1) Λ(s) =


cosh(s) − sinh(s)
− sinh(s) cosh(s)

1
1

 ,

where s is called the rapidity and is related to v by cosh(s) = (1 + v2

c2
)−

1
2 .

To summarize this section: we have given a very brief account of why we
want to consider Minkowski spacetime as the arena for physics and intro-
duced its geometry and discussed its symmetries that are physically thought
of as tranformations between the coordinate systems (frames) used by a par-
ticular class of observers (the inertial ones).

2. Axioms for Quantum Field Theory

Before we lay down the axioms upon which quantum field theories (QFTs)
are based from the point of view of AQFT, we wish to motivate why non-
commutative algebras are used in their formulation.

What is physics? Very abstractly speaking, it is a pairing (A,ω) 7→ ω(A)
where:

• A is an observable, i.e. a model for a measuring device,
• ω is a state, i.e. a way to prepare an ensemble of physical systems,
• ω(A) is a real number, the expectation value of measuring A in the

ensemble represented by ω (i.e. the average value of the results of
many measurements of A in ω).

We take ω(A) to be the expectation value of many measurements in an
ensemble and not as a particular measurement result because we need to
allow for statistical fluctuations: in general physics is a messy subject and
we do not have full information about the system, the state is mixed, i.e. a
convex combination of subensembles. However, as an idealization one may
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consider pure states which represent configurations of which we have optimal
attainable knowledge.

If we model the set of observables by the self-adjoint elements of a unital
∗-algebra A (disregarding topological questions for a moment), the set of
states is given exactly by the set of states on A in the mathematical sense,
i.e. states are linear functionals ω on A which are normalized (ω(1) = 1) and
positive (ω(A∗A) ≥ 0). For positive linear functionals the Cauchy-Schwarz
inequality holds:

|ω(A∗B)|2 ≤ ω(A∗A)ω(B∗B),

which guarantees that the fluctuations

∆ω(A)2 := ω(A2)− ω(A)2

are non-negative. Physically, ∆ω(A) is the standard deviation of many mea-
surements of the observable A in the state ω. Pure states are taken as ex-
tremal elements of the (convex) set of states, i.e. elements of this set that
cannot be represented as convex combinations of further states. Their ex-
istence is guaranteed if we specialize to C∗-algebras, which we will do from
now on for the sake of simplicity.

We can now come to the dividing line between a) classical and b) quantum
physics. a) In classical physics we expect no fluctuations in pure states. If
A models the observables of a classical system, it is a commutative algebra
(being the algebra of (smooth) functions on the phase space of the system).
There is a theorem that says that the pure states of a commutative C∗-
algebra are exactly the factorizing ones: ω(AB) = ω(A)ω(B). Therefore
measurements in these states do not exhibit any fluctuations, they always
yield the same result in all measurements, as expected. b) In quantum
physics there are fluctuations even in pure states, optimal attainable knowl-
edge does not mean that there is no uncertainty about the outcome of the
measurement. To be honest, nobody can safely say why this is so. In
quantum physics A is therfore taken to be non-commutative. Let us briefly
explain the reasoning behind this: define the commutator of two elements
A,B to be

[A,B] := AB −BA,
- it then follows from the Cauchy Schwartz inequality that for any state ω
and any two elements A,B ∈ A we have

∆ω(A)∆ω(B) ≥ 1

2
|ω([A,B])|.

This is a way to express Heisenberg ’s famous uncertainty principle. If two
observables A,B do not commute, they are non-commensurable, i.e. we may
find a state with really small fluctuations in A, but Heisenberg’s uncertainty
principle tells us that the fluctations in B have to be really large at the same
time. This also tells us that even in pure states there will be observables
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that have non-vanishing fluctuations. Therefore we have to consider non-
commutative algebras in quantum theory.

In the following, we will present axioms for quantum field theory (QFT).
QFT was devised in the 30ies of the last century in order to bring together
the principles of special relativity and quantum physics. Physically this
means this theory should be able to describe quantum processes that take
place in a regime where special relativistic effects are important, such as the
collider experiments of elementary particle physics. Perturbative QFT does
so with great success, as exemplified by the famous standard model of par-
ticle physics (this specific QFT model was written down in the early 70ies
after people realized how useful (non-Abelian) gauge theory is). However,
the mathematical structure of QFT has remained a mystery for decades,
which motivated mathematical physicists to lay down physically clear ax-
ioms as starting points to investigate the theory with mathematical rigour
and care. To this day, the structure of the standard model is not understood
in this context, it can only be treated perturbatively. However, many con-
ceptual questions and results concerning the general structure of QFT have
been derived in the framework of rigorous QFT (called also algebraic QFT,
local quantum physics or general QFT). We will now write down the Haag-
Kastler axioms for nets of von Neumann algebras on Minkowski spacetime
- which should look very similar to the ones for conformal nets on the circle
that our workshop is mainly concerned with. However, even if they look
similar and many of the results on S1 you have seen so far have an ana-
logue on R4 (in fact, they have most likely been proven in this framework
first), the axioms for nets on R4 give rise to mathematics that is vastly more
complicated.

Definition. Nets of Observable algebras and Haag-Kastler axioms: A net
of von Neumann algebras on Minkowski spacetime, O 7→ A(O), where O
are open, bounded, causally complete (O = O′′) regions of M4, satisfies the
Haag-Kastler axioms if

(1) O1 ⊂ O2 ⇒ A(O1) ⊂ A(O2) (Isotony)
(2) O1 ⊂ O′2 ⇒ A(O1) ⊂ A(O2)

′ (Locality)

(3) There is an automorphic action of P↑+ with αg(A(O)) = A(gO) for

g ∈ P↑+. (Poincaré Symmetry)

The quasi-local algebra A is defined as the C∗-completion of the union of
all the algebras of the net.

Item (1), isotony, is required for consistency: if we use a measurement ap-
peratus that is placed in some spacetime region, it is surely also placed
in any spacetime region containing the original one. Item (2), locality,
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expresses the requirement that observables placed in spacelike separated
regions should be commensurable in the sense explained above - their mea-
surement fluctuations in any state should be independent of one another.
You may have heard about non-local effects in quantum theory as expressed
by the EPR-paradoxon and Bell’s inequalities. These matters concern cor-
relations among spacelike separated measurements and are not covered by

this axiom. Item (3), (Poincaré Symmetry), requires that the action of P↑+
on the net is geometrical: it maps the algebra of one region onto the algebra
of the transformed region, thereby preserving all algebraic relations.

So far, we have considered an abstract net only, without reference to the
underlying Hilbert space. However, to arrive at the usual picture of quantum
theory, where operators and Hilbert spaces play a prominent role, one has
to discuss representations of the net. The simplest one, which is of relevance
in particle physics, is the vacuum representation.

Definition. The vacuum representation A representation π0 of the Haag-
Kastler net O 7→ R(O) on some Hilbert space H is called vacuum represen-
tation if:

(4) There exists a strongly continuous unitary representation U of P↑+
that implements the Poincaré symmetry: U(g)π0(R(O))U(g)∗ =
π0(αg(R(O))). (Poincaré Covariance)

(5) The joint spectrum of the generators of the translation subgroup
U |R4 lies in V +. (Spectrum Condition)

(6) There exists a unique translation invariant vector Ω ∈ H and the set
{π0(A)Ω : A ∈ R(O),O double cone} is dense in H. (Vacuum)

Item (4), Poincaré Covariance, realizes the Poincaré group as symmetry
group of the system in the usual quantum mechanical sense. Item (5), the
Spectrum Condition, ensures that every inertial observer measures positive
energy (the corresponding observable is the generator of time translations,
the “Hamiltonian”) and constitutes a stability condition: roughly speaking,
in the vacuum, the spectrum of the energy should have a lower bound,
otherwise we could extract arbitrary amounts of energy for extended periods
of time out of “nowhere”. Item (6) ensures that there is a Ω ∈ H which
formalizes our idea of the vacuum: it looks the same everywhere and is, in
fact, the state with lowest (zero) energy. Under the stated assumptions, it
follows that the vacuum Ω is Poincaré-invariant also - it looks the same to
any inertial observer and to each such observer, it is “empty” - it has energy
zero.

We mention the following remarkable result, which is known as “Reeh-
Schlieder”-theorem.
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Theorem 2.1. Reeh-Schlieder Theorem If the Haag-Kastler net is additive,
i.e.

O = ∪iOi ⇒ R(O) = ∨iR(Oi),
then the vaccum vector Ω is cyclic and separating for any double cone.

This is quite amazing, because one would like to think of some vector AΩ ∈
H with A ∈ A(O) as describing an excitation of the vacuum localized in the
region O. However, the theorem tells us that we can approximate AΩ to
arbitrary precision by acting on the vacuum Ω with elements of A(Õ) with

Õ ⊂ O′, i.e. by observables whose placement is spacelike separated to O.
So by making use of “vacuum fluctuations” here, we can in principle affect
regions very far away. (“In principal, we could without leaving this room
build a Taj Mahal behind the moon. ”) However, such effects are in general
surpressed, roughly because one would have to invest truely insane amounts
of energy to make it happen. For us, the result is interesting mathematically,
it says that for each double cone, the vacuum vector is standard for the
local algebra associated to this region and we may define the corresponding
Tomita-Takesaki objects (known from previous talks).

Note that there are other representations which are of relevance in physics,
for example those describing “charged sectors” that are important for ele-
mentary particle physics. Another type, which we will come across in these
notes, are representations describing a configuration that is in global ther-
mal equilibrium at a given inverse temperature β = 1

kBT
, where T is the

absolute Temperature and kB is Boltzmann’s constant which we will put
equal to one by a suitable choice of units. By the GNS construction, there
is a one-to-one correspondence between states of a net and representations
thereof. The equilibrium reps alluded to come about as GNS reps of so-called
KMS states, which we already came across in earlier talks.

Definition. KMS condition Consider an algebra A that comes equipped
with a one-parameter group of automorphisms {γt}t∈R. A state ϕ of A is
called (γt, β)-KMS state for some β ∈ R, if, for each pair a, b ∈ A, there is
a function h : C → C, analytic in the strip {z ∈ C : 0 < Im(z) < β} and
continuous at the boundaries, such that

h(t) = ϕ(a γt(b)) and h(t+ iβ) = ϕ(γt(b) a)

for t ∈ R.

It is a consequence of the definition that the state ϕ is invariant under γt
for all t ∈ R. The physical relevance of the KMS-condition now comes
from the fact that it is the suitable generalization of Gibbs ensembles (that
describe thermal equilibrium situations in quantum statistical mechanics of
finite systems) to the infinitely extended medium, like a quantum field in
Minkowski spacetime. We will not give any details here.
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What is important for us here is the following fact: Consider a state ω of the
net. If the time evolution (i.e. the dynamics) of an observer1 is given by the
one-parameter group of automorphisms {γt}t∈R of the quasilocal algebra
A, and if ω is an (γt, β) KMS-state with β ∈ R+, then ω represents an
ensemble which is in global thermal equilibrium at inverse tmeperature β
for this observer. As was mentioned right after the definition of the KMS
condition, the state is invariant under the dynamics (to the observer, it
looks the same at all times). One finds that the time translations can be
unitarily implemented and their generator is again a measure for the energy.
However, its spectrum is now unbounded, there is no lowest energy - simply
because you can extract arbitrary amounts of energy from an infinite “hot”
medium.

There is another set of axioms which is closer in spirit to the traditional
field theoretic approach that physicists are used to. It is called the G̊arding-
Wightman axioms. Its main objects are not algebras of observables but
quantum fields, represented as operator valued distributions. Recall that
classically, a field is (locally) a map that assigns to each point in spacetime
a set of observables, the field quantities. In quantum theory, observables
are modelled by elements of some non-commutative ∗-algebra, which can
be represented by (possibly unbounded) operators in some Hilbert space.
Therefore, we can try to “quantize” the classical idea of a field by requireing
that a quantum field is a map from spacetime into the set of operators of
some Hilbert space (operator valued function). However, this map must
satisfy some properties that are motivated by physics: locality, covariance
under the Poincaré group, some stability condition etc. . It turns out that
the resulting map cannot be an operator valued function because it is too
singular, we must resort to operator valued distributions, i.e. maps from
some test function space (usually the Schwartz class functions S(R4)) into
the set of unbounded operators of some Hilbert space. More precisely, we
have the following axioms, which for simplicity we will state only in the case
of a “scalar, Bosonic field”.

Definition. Quantum Fields and G̊arding-Wightman axioms A Quantum
field is a linear map f 7→ φ(f) from S(R4) into the set of (unbounded)
operators on a Hilbert space H such that

(1) there is a dense invariant domain D ⊂ H for all fields φ(f). φ(f) ⊂
φ(f)∗ and for real-valued f , the φ(f) are essentially self-adjoint.

(2) there is a strongly continuous representation U of the Poincaré group

P↑+ with U(g)φ(f)U(g)∗ = U(fg) (here fg(x) := f(g−1(x))),
(3) the joint spectrum of the generators of U |R4 (the translations) lies

in V +,

1The time evolution of an inertial observer is given by the one-parameter group of
automorphisms given by his time-translations as in item (3) of the Haag-Kastler axioms.
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(4) there is a unique (up to phase) translation invariant vector Ω ∈ D,
the “vacuum” vector,

(5) if the supports of f and g are spacelike separated, then φ(f)φ(g) =
φ(g)φ(f) on D.

One may ask about the connection between the two sets of axioms. While
things are not perfectly clear, there are some results. First of all, given a
set of Wightman fields on some Hilbert space H, one may arrive at a Haag-
Kastler net with vacuum representation H by defining A(O) to be the von
Neumann algebra generated in B(H) by the bounded functional calculi of
the fields φ(f) with supp(f) ⊂ O. For the other direction, i.e. determining
the field content of a net, one starts from the idea that fields, in some sense,
are pointlike localized quantities and one should therefore be able to extract
the field observable at x ∈M4 as member of

⋂
O3xA(O). However, this set

turns out to be trivial: it consists only of multiples of the unit. One can
modify this idea and really arrive at a meaningful field content if the theory
has a nice “high energy behaviour” 2.

There are a number of interesting results concerning the structure of any
Wightman QFT like the famous Spin-Statistics Theorem, but we will men-
tion here only the following two, because we need them later. Again, we
have the Reeh-Schlieder-theorem3, which is interesting for the same reasons
as before. Nomenclature: a Wightman QFT is called irreducible if apart
from multiples of the identity there is no bounded operator in B(H) that
commutes with all fields φ(f).

Theorem 2.2. Reeh-Schlieder Theorem Assume the Wightman field φ is
irreducible. Then, for any non-empty open region O of Minkowski spacetime,
the vacuum vector Ω is cyclic for the von Neumann algebra A(O) associated
to the fields φ(f), f supported in O (in the sense described beore). By
locality, it is standard (i.e. also separating) for A(O) if O′ is non-empty.

It was one of the early successes of rigorous QFT to show that in any Wight-
man QFT exhibits a particular kind of symmetry, the PCT (“parity-charge-
time”) symmetry. More precisely

Theorem 2.3. (part of) the PCT Theorem For a Wightman field there
exists an anti-unitary operator Θ uniquely defined by:

Θφ(f)Θ−1 = φ(f−)∗ ; ΘΩ = Ω,

where f−(x) := f(−x).

2By the uncertainty relations, one has to invest higher and higher energies in order
to measure in increasingly smaller regions, so imagine what happens if you try look for
observables that measure at a point . . .

3In fact, Reeh and Schlieder proved it in the Wightman setting long ago, while the
corresponding result in the Haag Kastler setting is much more recent work by Borchers.
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Θ implements a reversal of the spatial and time coordinates (“P” and “T”)
and flips the “charge” of the field (“C”) at the same time. We need Θ for
the Bisognano Wichmann theorem below.

3. Bisognano-Wichmann theorem and Physics

In this section, we are going to state the Bisognano-Wichmann theorem (BW
theorem) and discuss some of its consequences. Originally, the BW theorem
was proven in the Wightman framework. It has not been proven in general
for Haag-Kastler nets, but there has been progress in the recent years which
I mention in the beamer slides for this talk. Check there if you’re interested.
In particular, if the Haag-Kastler net possesses is a larger symmetry group
than usual (i.e. the conformal symmetry group on R4) then you do get the
BW property.

We need to consider so-called wedge regions of Minkowski spacetime, for
example the right wedge in x1-direction:

WR = {x ∈ R4 : x1 > |x0|}.

All other wedges are obtained by shifting WR: g(WR) for g ∈ P. Note
however that WR is invariant under the ‘boosts’ given in equation (1):
Λ(s)WR ⊆ WR for all s ∈ R. Given a G̊arding-Wightman QFT, we con-
sider the corresponding Haag-Kastler net O 7→ A(O) that is associated to
it in the sense described in the previous section. Denote by A(WR) the von
Neumann algebra generated by the bounded functional calculi of the fields
φ(f) with supp(f) ⊂ WR. Assuming that the field is irreducible, we know
that by the Reeh-Schlieder Theorem 2.1 the vacuum vector Ω is standard
for A(WR) and we find the corresponding Tomita-Takesaki modular objects
JW , the modular conjugation, and ∆W , the modular operator that gives rise
to the modular group

σWτ (·) := ∆iτ
W (·)∆−iτW

acting on A(WR).

The BW Theorem now states that, remarkably, the action of these objects
on elements of the algebra is geometric. Denote by U(R23(·)) and U(Λ(·))
the unitary implementations of the rotations in the (x2, x3)-plane and the
boosts Λ(·) (as in equation (1)) respectively. Moreover, we define the one-
parameter subgroup

γs(·) := U(Λ(s))(·)U(Λ(s)∗

corresponding to the action of the boosts on A(WR).
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Theorem 3.1. Bisognano-Wichmann Theorem Under the named assump-
tions, we have:

JW = Θ · U(R23(π)) and ∆iτ
W = U(Λ(−2πτ)) for all τ ∈ R.

Therefore σWτ = γ−2πτ . Here, Θ is the PCT-operator introduced in the
previous section.

Note that since the Poincaré group acts geometrically on the net, we have
similar results for all other wedges as well.

Before we can discuss one very interesting consequence of this theorem for
physics (i.e. the Unruh effect), we need to mention the relationship between
modular theory and the KMS condition/thermal equilibrium (which has a
very interesting history in its own right).

Proposition 3.2. Let ϕ be a state of a von Neumann algebra A with corre-
sponding GNS rep πϕ and cyclic GNS vector Ωϕ that is also separating for
πϕ(A)′′ 4. Denote the corresponding modular group by {στ}τ∈R. Then ϕ is
a (στ ,−1)-KMS state.

Taken together with the characterization of global thermal equilibrium sit-
uations via the KMS property, this proposition has the following important
consequence in the Haag-Kastler setting.

Corollary 3.3. A global thermal equilibrium state with respect to an ob-
server with time evolution αt (t physical time, i.e. the proper time of the
observer) with inverse temperature β may be characterized as a state over the
quasi-local algebra whose modular automorphism group στ (τ is the “modular
parameter“) is related to to αt by

στ = α−βτ ,

i.e. t = −βτ .

In order to explain what this has to do with the BW theorem, we need to
discuss the geometrical setup a bit more. We will be very brief, otherwise
we would have to go into too much special relativity. First of all, note that
the orbit of the point x = (0, a−1, 0, 0) ∈WR, a ∈ R+, under the boosts Λ(·)
(equation (1)) is precisely the trajectory of a uniformly accelerated observer
with acceleration a (i.e. the acceleration along the curve Λ(s)x is given by
a). Moreover, the proper time t of the observer, i.e. the time measured by
a clock that he or she carries around5, is given by t = a−1s.

4This is the case if ϕ is faithful (i.e. ϕ(a∗a) = 0 ⇒ a = 0), for example.
5Essentially, proper time is just the arc length of the curve in Minkowskian geometry.

It is positive for physical observers, i.e. for observers moving with a velocity of less than
c.
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This tells us - going back to the notation introduced before the BW theorem
- that the time evolution of this particular observer on A(WR) is given by
the one-parameter group of automorphisms αt := γat. By the BW theorem,
we therefore know that

αt = σW− a
2π
t.

On the other hand, Corollary 3.3 tells us that

αt = σW− 1
β
t

and hence we find β = 2π
a or, in terms of the absolute temperature:

(2) T =
a

2π
.

This is the famous Unruh Temperature. This result is quite astonishing: it
says that an observer in uniformly accelerated motion perceives the vacuum
(which for an inertial observer is “empty”) as a heat bath with temperature
proportional to his or her acceleration. If you think about it, this is really
amazing. However, this effect is incredibly small, going back to cgs units,
one finds that an acceleration of 1g gives rise an Unruh Temperature of the
order of magnitude of 10−20 degrees Kelvin.

This effect was discovered by Unruh6 in an attempt to understand the Hawk-
ing effect. The Hawking effect is the emission of thermal radiation by a black
hole that interacts with a quantum field. Classically, a black hole is truly
“black”, it does not emit anything - but Hawking made the great discovery
that once you let a quantum field propagate on a black hole spacetime, it
actually starts to emit thermal radiation, i.e. it aquires a temperature, the
Hawking Temperature that looks similar to the Unruh Temperature. This
and many other interesting questions are the subject of “Quantum Field
Theory on Curved Spacetime”, which investigates the effects that space-
time curvature (as in general relativity) has on quantum field theory and
thereby makes heavy use of algebraic QFT. Incidentally, this is where my
own research is located.

6Only later it was observed that the BW theorem establishes this effect rigorously in
any QFT model.


