THE HYPERGEOMETRIC FUNCTION

SPEAKER: DANIEL MOSELEY TYPIST: EMILY PETERS

ABSTRACT. Notes from the "Conformal Field Theory and Operator Algebras workshop," August 2010, Oregon.

Want to relate F_{μ} and G_{μ} after analytic continuation. Writing F_{μ} s in terms of G_{ν} s – coefficients are "transport coefficients."

- (1) Hypergeometric function/equation
- (2) Compute transport coefficients for the "Basic ODE"

Definition. Gauss's hypergeometric equation: second order ODE with 3 regular singular points $\{0, 1, \infty\}$:

$$z(1-z)f'' + [c - (1+a+b)z]f' - abf = 0.$$

What's cool about this are its solutions, built from

$$_{2}F_{1}(a,b;c;z) = \sum_{n\geq 0} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{z^{n}}{n!}$$

with $(a)_n := a(a+1)\cdots(a+n-1)$.

Rewrite differential equation as

$$F'(z)=(\frac{A}{z}+\frac{B}{1-z})F(z)$$
 with $A=\left(\begin{array}{cc}0&1\\0&1-c\end{array}\right)$ and $B=\left(\begin{array}{cc}0&0\\-ab&1+a+b-c\end{array}\right)$ and $F=\left(\begin{array}{cc}f(z)\\zf'(z)\end{array}\right)$

Replacing A, B by n-by-n matrices, this same equation is called an abstract hypergeometric equation. Here $(a)_n = \frac{\Gamma(a+n)}{\Gamma(n)}$ with $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$; for natural numbers x, $\Gamma(x) = x!$.

Notation and assumptions: $f'(z) = \frac{Pf}{z} + \frac{Qf}{1-z}$, $f: \mathbb{C} \to V = \mathbb{C}^n$, $P, Q \in \text{End}(V)$. P has eigenvalues λ_i with differ mod 1, and eigenvectors ξ_i . Q is a

Date: August 19, 2010.

Available online at http://math.mit.edu/~eep/CFTworkshop. Please email eep@math.mit.edu with corrections and improvements!

nonzero multiple of a rank-one idempotents, so $Q^2 = \delta Q$ for some nonzero δ ; so $tr(Q) = \delta$. Rank one implies that there's some $\phi \in V^*$ and $v \in V$ so that $Q(x) = \phi(x)v$, $\phi(v) = \delta$.

Q is in general position w.r.t. P: $v = \Sigma \delta_i \xi_i$, with $\delta_i \neq 0$.

Choose eigenvectors so that $\phi(\xi_i) = 1$. Let R = Q - P and suppose R satisfies the same conditions as P with respect to Q. Let $(\zeta_j, -\mu_j)$ be the normalized eigenvectors/values.

Look at power series for the solutions around zero, call these f_i : $f_i(z) = \sum_{n} \xi_{i,n} z^{\lambda_i + n}$; $\xi_{i,0} = \xi_i$. This converges in $\{z : |z| < 1, z \notin [0,1)\}$.

Similarly the solutions around infinity, g_j : $g_j(z) = \sum_n \zeta_{j,n} z^{\mu_j - n}$; $\zeta_{j,0} = \zeta_j$.

Extend analytically and compare:

$$f_i(z) = \sum_j c_{ij} g_j(z)$$

Goal: compute c_{ij} .

We'll show:

$$c_{ij} = e^{i\pi(\lambda_i - \mu_i)} \frac{\prod_{k \neq i} \Gamma(\lambda_i - \lambda_k + 1) \prod_{\ell \neq j} \Gamma(\mu_j - \mu_\ell)}{\prod_{\ell \neq i} \Gamma(\lambda_i - \mu_\ell + 1) \prod_{k \neq i} \Gamma(\mu_i - \lambda_k)}$$

Fact. The transport matrix depends only on the eigenvalues of P and P-Q. This delendence is holomorphic.

Fact.
$$\sigma, \tau \in S_N$$
; $c_{ij}(\lambda_1, \ldots, \lambda_N, \mu_1, \ldots, \mu_N) = c_{\sigma(i), \tau(j)}(\lambda_{\sigma}(1), \ldots, \lambda_{\sigma}(N), \mu_{\tau}(1), \ldots, \mu_{\tau}(N))$.

Look at $\phi(f_1(z))$ because $\phi(f_1(z)) = \sum_j c_{ij}\phi(g_j(z))$. Recall power series for $f_1(z)$.

$$\Sigma_{n\geq 0}(n+\lambda_1)\xi_{1,n}z^n = \Sigma_{n\geq 0}P\xi_{1,n}z^n + Q(1+z+z^2+\ldots)\Sigma_{n\geq 0}\xi_{1,n}z^n.$$

$$(n + \lambda_1 - P)\xi_{1,n} = Q(\xi_{1,0} + \dots + \xi_{1,n-1})$$

Let
$$\alpha_{1,n} = \phi(\xi_{1,0} + \dots + \xi_{1,n}).$$

By normalization $\alpha_{1,0} = 1$.

Black box (see Wasserman):
$$\alpha_{1,n} = \prod_{j=1}^{m} \prod_{m=1}^{n} \frac{m + \lambda_i - \mu_j}{m + \lambda_i - \lambda_j}$$

Now get
$$\frac{\phi(f_1(z))}{z_1^{\lambda}(1-z)} = \sum_{n\geq 0} \alpha_{1,n} z^n = \sum_{n\geq 0} z^n \prod_{j=1}^m \prod_{m=1}^n \frac{m+\lambda_i - \mu_j}{m+\lambda_i - \lambda_j}$$
.

Restrict the λ_i 's, μ_j 's to real numbers; λ_i 's, μ_j 's are written in order $\lambda_i > \lambda_{i+1}$, $\lambda_1 + 1 > \mu_j > \lambda_j$ for all j.

Apply identity

$$\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} = \int_0^1 t^{a-1} (1-t)^{b-1} dt$$

(true when a, b > 0).

So,

$$\phi(f_1(z)) = (1-z)z^{\lambda_1}k \int \int \cdots \int (1-zt_2\cdots t_N)^{\mu_1-\lambda_1-a} \cdot \prod_{j\neq 1} t_j^{\lambda_1-\mu_j} (1-t_j)^{\mu_j-\lambda_j-1} dt_j$$
with $k = \prod_{j\neq 1} \frac{\Gamma(\lambda_1-\lambda_j+1)}{\Gamma(\lambda_1-\mu_j+1)\Gamma(\mu_j-\Lambda_j)}$

Black box: $\phi(g_j(z)) \approx |z|^{\mu_j} e^{\pi i \mu_j}$ is $z \in \mathbb{R}$ is large negative.

So
$$\phi(g_j(z)) \approx c_{11}|z|^{\mu_1}e^{\pi i\mu_1};$$

Thus
$$\phi(f_1(z)) \approx K e^{i\pi\lambda_1} |z|^{\mu_1} \Pi_{j\neq 1} \in {}^1_0 t_j^{\mu_1 - \mu_j + 1} (1 - t_j)^{\mu_j - \lambda_j - 1} dt_j$$

and undoing the β identity,

$$c_{11} = e^{i\pi(\lambda_1 - \mu_1)} \Pi_{j \neq 1} \frac{\Gamma(\lambda_1 - \Lambda_j + 1)\Gamma(\mu_1 - \mu_j)}{\Gamma(\lambda_1 - \mu_j + 1)\Gamma(\mu_1 - \lambda_j)}$$