THE KNIZHNIK-ZAMOLODCHIKOV EQUATION

SPEAKER: ANATOLY PREYGEL TYPIST: EMILY PETERS

ABSTRACT. Notes from the "Conformal Field Theory and Operator Algebras workshop," August 2010, Oregon.

1. MOTIVATION:

Why do we expect a differential equation to be useful in this formalism Wasserman's using?

Recall. λ is a tableau or "signature"; it gives rise to V_{λ} . If λ admissible for level ℓ , we get H_{λ} , an irrep of $\tilde{LG}_{\ell} \rtimes S^1_{rot^n}$. This has $H_{\lambda}(0) = V_{\lambda}$.

Heuristically, what are primary fields? Hom_G($V_{\lambda} \otimes W, V_{\mu}$). Under favorable circumstances, get a map to Hom_{$\tilde{LG} \rtimes S_{rot}^1$}($H_{\lambda} \otimes C^{\infty}(S^1, W), H_{\mu}$). Say this takes ϕ to φ .

Think of φ as $W^u \otimes \operatorname{Hom}^{unbd}(H_\lambda, H_\mu)$ -value distribution.

Fourier modes: $\varphi(n) = \int_{S^1} \varphi(\zeta) \zeta^{-n} \frac{d\zeta}{2\pi\zeta}'' = \varphi(\zeta^{-n}).$

This is not so bad; for $w \in W$, $\varphi(n)(w)LH_{\lambda}(k) \to H_{\mu}(k-n)$

Some notation: $\lambda_1, \lambda_2, \mu$ are tableau; W_1, W_2 are *G*-representations. Set $\mathcal{U} = \operatorname{Hom}_G(V_{\lambda_1} \otimes W_1 \otimes W_2, V_{\lambda_2}).$

$$\begin{split} \phi^1 &: V_{\lambda_1} \otimes W_1 \to V_{\mu} \\ \phi^2 &: V_{\mu} \otimes W_2 \to V_{\lambda_2} \\ \phi^2 &\circ \phi^1 \in \mathcal{U} \end{split}$$

Date: August 19, 2010.

Available online at http://math.mit.edu/~eep/CFTworkshop. Please email eep@math.mit.edu with corrections and improvements!

replace ϕ^i by φ^i ; consider $\varphi^2 \circ \varphi^1$. We take (f,g) to $\varphi^2(f) \circ \varphi^1(g)$, for $f \in C^{\infty}(S^1, W_2), g \in C^{\infty}(S^1, W_1)$, still ignoring issues about unbounded operators.

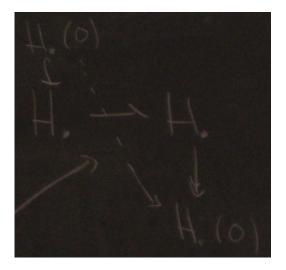
 $\mathcal{U} \simeq \bigoplus_{\mu'} \operatorname{Hom}_G(V_{\mu'} \otimes W_1, V_{\lambda_2}) \otimes \operatorname{Hom}_G(V_{\lambda_1} \otimes W_2, V_{\mu'})$

With superscripts on φ being charges, subscripts being targets and sources.

 $\phi^2 \circ \phi^1 = \Sigma_{\mu'}(?)\phi^{w_1}_{\lambda_2\mu'} \otimes \phi^{w_2}_{\mu'\lambda_1}$ gets sent to same think, with φ s.

Play with power series: $f = \Sigma f_n z^n$, $g = \Sigma g_n w^n$.

 $\varphi: f \mapsto \varphi(f).$



 φ defined to the the image under composition of the diagram above.

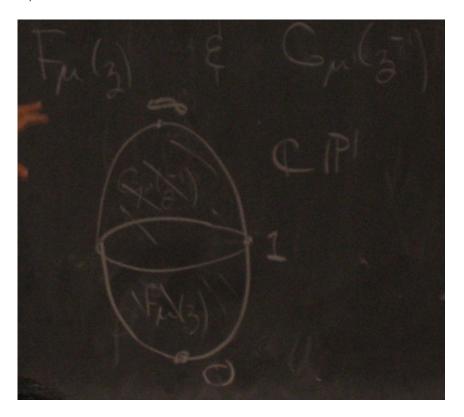
Four-point function: $F_{\mu} = \underline{\varphi^2(f) \circ \varphi^1(g)}$. By playing with power series, F_{μ} is a function of z/w with corefficients of the form $f_n g_{-n}$ times some number. ie, $F_{\mu}(\zeta) = \sum_{n \ge 0} \underline{\varphi^2(n) \circ \varphi^1(-n)} \zeta^n$.

Lemma 1.1. $\underline{\varphi^2(f)\varphi^1(g)} \in \mathcal{U}$ and $\underline{\varphi^2(f)\varphi^1(g)} = \int_{S^1 - \{1\}} (\tilde{f} \star g)(\zeta) F_{\mu}(\zeta) \frac{d\zeta}{2\pi\zeta}$, where \tilde{f} is f 'backwards' around the circle. This is assuming f and g have disjoint support, and F_{μ} extends continuously to $S^1 - \{1\}$.

It's easy to check

$$(\tilde(f)\star g)(\zeta)=(\tilde(g)\star f)(\zeta^{-1});$$

This means we have relations between holomorphic functions $F_{\mu}(\zeta)$ and $G_{\mu}(\zeta^{-1})$;



And, relations on these things that are called fourpoint functions (F_{μ}) give relations between primary fields.

Question: what's a four point function? why's it called that? What's it do?

Answer: So, given $f, g \in C^{\infty}(S^1, \mathbb{C})$ and $w_1, w_2 \in W_1, W_2$, we have $\underline{\varphi^2(w_2 f) \circ \varphi^1(w_1 g)}$.

underline here means to restrict to vectors v_{λ} in $H_{\lambda}(0)$; do this projection by taking inner products

 $\langle \underline{\varphi}^2(w_2 f) \circ \underline{\varphi}^1(w_1 g) v_{\lambda_1}, v_{\lambda_2}, \rangle$ – four inputs, hence 'four point function.'

Motivation: What do differential equations have to do with anything?

Answer: transport coefficients?

2. Generalities

Wanted "nice" OCE set isfied by F_{μ} and $G_{\mu}(\zeta^{-1}).$ Wasserman's "Basic ODE:"

$$\frac{df}{dz} = (\frac{P}{z} + \frac{Q}{1-z})f$$

f is \mathcal{U} -valued function, $P, Q \in \text{End}(\mathcal{U})$.

This equations is linear, first order, with regular singularities.

Example. $\mathcal{U} = \mathbb{C}$.

$$\frac{df}{f} = \frac{dz}{z}(P + Q\frac{z}{1-z})$$

here $\frac{df}{f} = d \log f$, $\frac{dz}{z} = d \log z$, and $P + Q \frac{z}{1-z}$ is holomorphic near 0.

This gives us $f = \zeta^P$ – a function homomorphic near 0 and unique up to scalars.

Note. If P has eigenvalues not differing by integers, then solutions near 0 look like $f = \sum a_i \tilde{f}(\zeta) \xi_i \zeta$

Canonical basis of U corresponding to eigenvalues of P, and corresponding to solutions.

General fact: Such a "nice" differential equation of $\mathbb{C}P^1$ with regular singularities at 0, 1, ∞ correspond to local systems on $\mathbb{C}P^1 - \{0, 1, \infty\}$ (with variables \mathcal{U}). These correspond to maps $\pi_1(\mathbb{C}P^1 - \{0, 1, \infty\}) \to GL(\mathcal{U})$.

3. MOTIVATION

Why do we get a differential equation?

Suppose we're given n + 1 points in $\mathbb{C}P^1$ and coordinates $D \to \mathbb{C}P^1$; this gives us a vectors space non-canonical \mathcal{U} .

A change of coordinates gives us an isomorphism of vectors spaces.

This sort of data gives us a variable on $M_{0,n+1}$ – the moduli space of (n+1) distinct ordered points in $\mathbb{C}P^1$.

A change of coordinates not necessarily preserving 0 also gives an isomorphism of vector spaces.

Think of this giving us a parallel transport corresponding to some connection on this vector bundle.

So, "nice" differential equations means something coming from a flat connection.

n = 3 (4 points). $M_{0,4} \simeq \mathbb{C}P^1 - \{0, 1, \infty\}.$

The KZ equation in Wasserman is this construction on $M_{0,4}$.

Other KZ equations in the literature: consider the configuration space of n points in \mathbb{C} , $\mathbb{C}^n - \Delta$. Take $\cup \{\infty\}$ to get $M_{0,n+1}$.

The setup for KZ: G = SU(N); \mathfrak{g} ; X_k is orthonormal basis for \mathfrak{g} .

The Casimir Ω (not to be confused with vacuum!) is $\Sigma X_k \otimes X_k$.

Lemma 3.1. Ω is in the center of $\mathcal{U}(\mathfrak{g})$ (universal enveloping algebra).

 Δ_{λ} is the scalar by which Ω acts of V_{λ} .

Let $\mathcal{U} = \operatorname{Hom}(V_{\lambda_1} \otimes W_1 \otimes W_2 \otimes \cdots \otimes W_{n-1}, V_{\lambda_2})$

 \mathfrak{g} acts on each vector space inside there.

 $\Omega_{i,j} = -\Sigma \pi_i(X_k) \otimes \pi_j(X_k) \in \text{End}(\mathcal{U})$; the Casimir element acting separately on the i, j components.

Theorem 3.2. F_{μ} satisfies

$$(N+\ell)\frac{dF_{\mu}}{dz} = (\frac{\Omega_{23} - (\Delta_{\mu} - \Delta_{w_1} - \Delta_{w_2})/2}{z} + \frac{\Omega_{12}}{z-1})F$$

Theorem 3.3. $f_{\mu} = \zeta^{(\Delta_{\mu} - \Delta_{w_1} - \Delta_{w_2})/(2(N+\ell))} F_{\mu}(\zeta)$ satisfies $(N+\ell) \frac{df_{\mu}}{dz} = (\frac{\Omega_{23}}{\zeta} + \frac{\Omega_{12}}{\zeta-1}) f_{\mu}$