Instructions. These study problems represent a sample of the types of problems that will be covered on Test 3. Some types of problems that may appear on the actual exam do not appear below and vice-versa.

1. Consider the function \(f(x) = x^3 - 3x^2 + 1 \).

 (a) On what intervals is \(f(x) \) increasing? Decreasing?

 \[\text{Answer: } (-\infty, 0), (2, \infty) \]

 (b) On what intervals is \(f(x) \) concave up? Concave down?

 \[\text{Answer: } \text{Concave up on } (1, \infty), \text{concave down on } (-\infty, 1) \]

 (c) Find all the critical points of \(f(x) \).

 \[\text{Answer: } x = 0, 2 \]

 (d) Find all the inflection points of \(f(x) \).

 \[\text{Answer: } x = 1 \]

 (e) Determine which of the critical points are local minima and which are local maxima. What is the global minimum, and what is the global maximum?

 \[\text{Answer: } x = 0 \text{ is a local maximum, } x = 2 \text{ is a local minimum; no global maximum or minimum} \]

 (f) Suppose the domain of \(f(x) \) is restricted to the interval \([-1/2, 4]\). What is the global minimum now, and what is the global maximum now?

 \[\text{Answer: } x = 2 \text{ is a global minimum, } x = 4 \text{ is a global maximum} \]

2. Sketch the graph of a function \(y = f(x) \) that satisfies all the following conditions.

 (a) \(f'(0) = f'(2) = f'(4) = 0 \).

 (b) \(f'(x) > 0 \) if \(x < 0 \) or \(2 < x < 4 \).

 (c) \(f'(x) < 0 \) if \(0 < x < 2 \) or \(x > 4 \).

 (d) \(f''(x) > 0 \) if \(1 < x < 3 \).
(e) \(f''(x) < 0 \) if \(x < 1 \) or \(x > 3 \).

3. Find a positive number such that the sum of the number and its reciprocal is as small as possible.

Answer: \(x = 1 \)

4. A farmer has 2400 ft. of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fence along the river. What are the dimensions of the field that can be fenced off that has the largest area?

Answer: 600 ft deep and 1200 ft wide

5. Find the point on the line \(y = 4x + 7 \) that is closest to the origin \((0, 0)\).

Answer: \((-28/17, 7/17)\)

6. At which points on the curve \(y = 1 + 40x^3 - 3x^5 \) does the tangent line have the largest slope?

Answer: \((-\sqrt{2}, 1 - 256\sqrt{2})\) and \((\sqrt{2}, 1 + 256\sqrt{2})\)
7. A certain line L passes through the point $(3,5)$. If the area in the first quadrant bounded by the line L, the x–axis, and the y–axis is the smallest possible, find the equation of the line.

Answer: $y = -5/3x + 10$

8. A radar gun was used to record the speed of a runner during the first five seconds of a race. (See the table below.)

<table>
<thead>
<tr>
<th>t (sec)</th>
<th>v (m/sec)</th>
<th>t (sec)</th>
<th>v (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>3.0</td>
<td>10.51</td>
</tr>
<tr>
<td>0.5</td>
<td>4.67</td>
<td>3.5</td>
<td>10.67</td>
</tr>
<tr>
<td>1.0</td>
<td>7.34</td>
<td>4.0</td>
<td>10.76</td>
</tr>
<tr>
<td>1.5</td>
<td>8.86</td>
<td>4.5</td>
<td>10.81</td>
</tr>
<tr>
<td>2.0</td>
<td>9.73</td>
<td>5.0</td>
<td>10.81</td>
</tr>
<tr>
<td>2.5</td>
<td>10.22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Construct (and evaluate) a rectangle sum that uses five subintervals and left endpoints to estimate the distance traveled by the runner during the first five seconds. (Rectangle sums are more properly called Riemann sums.)

Answer: ≈ 38.34 ft

(b) Construct (and evaluate) a rectangle sum that uses ten subintervals and right endpoints to estimate the distance traveled by the runner during the first five seconds.

Answer: ≈ 47.19 ft