Some (Discrete) Joint Distributions
Stat 304 Fall 2005

Example 1 Suppose three balls are randomly selected from an urn containing 3 red, 4 white, and 5 blue balls.
Let \(R \) and \(W \) denote the number of red and white balls chosen respectively. The joint probability density of \(R \) and \(W \) is given by \(f_{R,W}(i,j) = P(R = i, W = j) \) where \(i = 0, 1, 2, 3 \) and \(j = 0, 1, 2, 3 \). Computing, we obtain the following values for \(f_{R,W}(i,j) \).

\[
\begin{align*}
&f_{R,W}(0,0) = \binom{3}{3} \binom{7}{0} = \frac{10}{220} \\
f_{R,W}(1,0) = \binom{3}{2} \binom{7}{1} = \frac{40}{220} \\
f_{R,W}(0,1) = \binom{3}{3} \binom{7}{2} = \frac{30}{220} \\
f_{R,W}(2,0) = \binom{3}{2} \binom{7}{3} = \frac{10}{220} \\
f_{R,W}(0,2) = \binom{3}{3} \binom{7}{4} = \frac{15}{220} \\
f_{R,W}(1,1) = \binom{3}{2} \binom{7}{5} = \frac{60}{220} \\
f_{R,W}(2,1) = \binom{3}{2} \binom{7}{6} = \frac{12}{220} \\
f_{R,W}(3,0) = \binom{3}{3} \binom{7}{7} = \frac{1}{220} \\
\end{align*}
\]

The above values are summarized in the following table.

<table>
<thead>
<tr>
<th>(i)</th>
<th>(j)</th>
<th>(f_R(i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>\frac{10}{220}</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>\frac{40}{220}</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>\frac{30}{220}</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>\frac{10}{220}</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>\frac{15}{220}</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>\frac{60}{220}</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>\frac{12}{220}</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>\frac{1}{220}</td>
</tr>
</tbody>
</table>

Note that the row and column sums are given in the margins of the table. They are often referred to as the 'marginal pdf's' of \(R \) and \(W \) respectively.

Example 2 A balanced die is thrown. Then, a fair coin is tossed the number of times that the die showed. Let \(X \) be the outcome of the die toss, and \(Y \) be the number of tails that appeared when the coin was tossed. The joint probability density of \(X \) and \(Y \) is given by \(f_{X,Y}(i,j) = P(X = i, Y = j) \) where \(i = 1, 2, 3, 4, 5, 6 \) and \(j = 1, 2, 3, 4, 5, 6 \).

\[
\begin{align*}
&f_{X,Y}(1,0) = P(Y = 0 | X = 1)P(X = 1) = (1/6)(1/2) = 1/12 \\
f_{X,Y}(1,1) = P(Y = 1 | X = 1)P(X = 1) = (1/6)(1/2) = 1/12 \\
f_{X,Y}(2,0) = P(Y = 0 | X = 2)P(X = 2) = (1/4)(1/6) = 1/24 \\
f_{X,Y}(2,1) = P(Y = 1 | X = 2)P(X = 2) = (1/2)(1/6) = 1/12 \\
f_{X,Y}(2,2) = P(Y = 2 | X = 2)P(X = 2) = (1/4)(1/6) = 1/12 \\
&f_{X,Y}(3,0) = P(Y = 0 | X = 3)P(X = 3) = \frac{3}{7}(1/2)^0(1/2)(1/6) = 1/8 \\
f_{X,Y}(3,1) = P(Y = 1 | X = 3)P(X = 3) = \frac{3}{7}(1/2)(1/2)(1/6) = 3/48 \\
f_{X,Y}(3,2) = P(Y = 2 | X = 3)P(X = 3) = \frac{3}{7}(1/2)^2(1/2)(1/6) = 3/48 \\
f_{X,Y}(3,3) = P(Y = 3 | X = 3)P(X = 3) = \frac{3}{7}(1/2)^3(1/2)(1/6) = 1/48 \\
\end{align*}
\]

The computation of the remaining probabilities are similar. The results are summarized in the table below.

<table>
<thead>
<tr>
<th>(i)</th>
<th>(j)</th>
<th>(f_X(i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>\frac{7}{120}</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>\frac{1}{120}</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>\frac{1}{120}</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>\frac{1}{120}</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>\frac{1}{120}</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>\frac{1}{120}</td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td>\frac{1}{120}</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>\frac{5}{84}</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>\frac{1}{84}</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>\frac{1}{84}</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>\frac{1}{84}</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>\frac{1}{84}</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>\frac{1}{84}</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>\frac{1}{84}</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
f_Y(j) &= \frac{1}{84}, \frac{1}{84}, \frac{1}{84}, \frac{1}{84}, \frac{1}{84}, \frac{1}{84} \\
\end{align*}
\]
Example 3 Suppose that 15% of the families in a certain community have no children, 20% have one, 35% have two, and 30% have three. Suppose further that in each family, each child is equally likely to be a boy or a girl. If a family is chosen at random from this community, then B, the number of boys, and G, the number of girls, in this family will have a joint probability distribution $f_{B,G}(i,j) = P(B = i, G = j)$.

\begin{align*}
 f_{B,G}(0,0) &= P(\text{no children}) = .15 \\
 f_{B,G}(0,1) &= P(\text{one girl and a total of one child}) \\
 &= P(\text{one girl | one child})P(\text{one child}) = (.50)(.20) = .10 \\
 f_{B,G}(0,2) &= P(\text{two girls and a total of two children}) \\
 &= P(\text{two girls | two children})P(\text{two children}) = (.50)^2(.35) = .0875 \\
 f_{B,G}(0,3) &= P(\text{three girls and a total of three children}) \\
 &= P(\text{three girls | three children})P(\text{three children}) = (.50)^3(.30) = .0375 \\
 f_{B,G}(1,0) &= P(\text{one boy and a total of one child}) \\
 &= P(\text{one boy | one child})P(\text{one child}) = (.50)(.20) = .10 \\
 f_{B,G}(1,1) &= P(\text{one boy, one girl, and a total of two children}) \\
 &= P(\text{one boy and one girl | two children})P(\text{two children}) = (.50)(.35) = .175 \\
 f_{B,G}(1,2) &= P(\text{one boy, two girls, and a total of three children}) = (3)(.50)^2(.30) = .1125
\end{align*}

The remainder of the probabilities are just as easily computed. They are summarized in the following table.

\[
\begin{array}{c|cccc|c}
 i & 0 & 1 & 2 & 3 & f_B(i) \\
 \hline
 0 & .15 & .10 & .0875 & .0375 & .3750 \\
 1 & .10 & .175 & .1125 & 0 & .3875 \\
 2 & .0875 & .1125 & 0 & 0 & .2000 \\
 3 & .0375 & 0 & 0 & 0 & .0375 \\
\end{array}
\]

\[
\begin{array}{c|cccc}
 j & f_G(j) & .3750 & .3875 & .2000 & .0375 \\
\end{array}
\]