Classwork for 3.1
Applied Calculus I – Math 131.00(7,8) – Fall 2013

Names: ____________________________ Solution Key__________________________

Show your work for credit.

1. We consider the parabola \(y = f(x) = \frac{x^2}{3} + 3 \).

 (a) Find a formula for the slope of the tangent lines to \(f \) at the points \(x = a \) and \(x = -a \).

 \[
 f'(x) = \frac{2}{3}x
 \]

 \[
 f'(a) = m = \frac{2}{3}a = \frac{2a}{3} \quad \quad \quad f'(-a) = M = \frac{2}{3}(-a) = -\frac{2a}{3}
 \]

 (b) Determine \(a \) so that these two tangent lines intersect perpendicularly. Sketch a picture.

 \[
 \text{Need} \quad m = \frac{-1}{M} \quad \text{so} \quad \frac{2a}{3} = \frac{-1}{\frac{2a}{3}} = \frac{-1}{1} \quad \frac{a}{2a} = \frac{3}{2a}.
 \]

 \[
 \text{i.e.,} \quad \frac{2a}{3} = \frac{3}{2a} \quad \text{or} \quad 4a^2 = 9 \quad \Rightarrow \quad a = \sqrt{\frac{9}{4}} = \frac{3}{2}
 \]

 (c) Find an equation for one of the tangent lines above.

 \[
 \text{the left one:} \quad y - y_1 = m(x - x_1)
 \]

 \[
 y - \left[\frac{a^2}{3} + 3 \right] = \left[\frac{2a}{3} \right] \left(x - \left[a \right] \right)
 \]

 \[
 y = \left(\frac{1}{3} \left(\frac{3}{2} \right)^2 + 3 \right) + \left(\frac{2}{3} \left(\frac{3}{2} \right) \right) \left(x - \frac{3}{2} \right)
 \]
2. Let \(f(t) \) and \(g(t) \) give, respectively, the amount of water (in acre-feet) in two different reservoirs on day \(t \). Suppose that \(f(0) = 2000 \), \(g(0) = 1500 \), \(f'(0) = 11 \), and that \(g'(0) = 8 \). Let \(h(t) = f(t) - 2g(t) \).

(a) Evaluate \(h(0) \) and \(h'(0) \). Don’t forget units.

(b) What do these quantities tell you about the region’s water supply?

(c) Assume \(h' \) is constant for \(0 \leq t \leq 800 \). Then \(h \) will have a zero in this interval. Find it.

(d) Now assume \(h \) is concave for \(0 \leq t \leq 800 \). Does \(h' \) have any zeros? Does \(h \) have any zeros? Sketch a few possible scenarios.
3. Find an appropriate window in which to view the function \(F(h) = \frac{\sin(4 + 2h) - \sin(4)}{h} \). Use that window to estimate the value of

\[
\lim_{h \to 0} F(h).
\]

Use your answer to lend credence to the claim that \(\frac{d}{dx} (\sin 2x) \bigg|_{x=2} = 2 \cos(4) \).

I used

\(x_{\text{min}} \)	-2.5
\(x_{\text{max}} \)	2.5
\(y_{\text{min}} \)	-1.5
\(y_{\text{max}} \)	-1.5

\[
\frac{d}{dx} (\sin 2x) \bigg|_{x=2} = \lim_{h \to 0} \frac{\sin(2(2+h)) - \sin(2)}{h} = \lim_{h \to 0} F(h).
\]

It looks like

\[
\lim_{h \to 0} F(h) \approx -1.30
\]

you tell me that the answer should be

\[
2 \cos(4) \approx -1.307
\]

4. Compute the following:

(a) \(\frac{d}{dx} \left(2x^7 - \sqrt[3]{x} + \frac{x+1}{x^5} \right) - x \)

\[
= \frac{d}{dx} \left(2x^7 - \frac{1}{3}x^{\frac{1}{3}} + x^{-4} + x^{-5} \right) - x
\]

\[
= 14x^6 - \frac{1}{9}x^{-\frac{2}{3}} - 4x^{-5} - 5x^{-6} - x
\]

(b) \(f'(x) \), if \(f(x) = (x^2 + x)(x^3 - 2) \)

\[
f' = 5x^4 - 4x + 4x^3 - 2
\]

(c) \(\frac{d^2}{dx^2} \left(x^6 + \frac{x^4}{2} - 2x \right) = \frac{d}{dx} \left(\frac{d}{dx} \left(x^6 + \frac{x^4}{2} - 2x \right) \right) \)

\[
= \frac{d}{dx} \left(6x^5 + \frac{4x^3}{2} - 2 \right) = 30x^4 + 6x^2
\]

(d) \(f'(x) \), if \(f(x) = (x^2 + x)^3 \)

\[
f' = 6x^5 + 10x^4 + 8x^3 + 6x^4 + 3x^2
\]